Derived equivalence, recollements under $ H $-Galois extensions

In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 8; no. 2; pp. 3210 - 3225
Main Authors Dong, Jinlei, Li, Fang, Sun, Longgang
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2023
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2023165

Cover

More Information
Summary:In this paper, assume that $ H $ is a Hopf algebra and $ A/B $ is an $ H $-Galois extension. Firstly, by introducing the concept of an $ H $-stable tilting complex $ T_{\bullet} $ over $ B $, we show that $ T_{\bullet}\otimes_BA $ is a tilting complex over $ A $ and a derived equivalence between two $ H $-module algebras can be extended to smash product algebras under some conditions. Then we observe that $ 0\rightarrow {\rm End}_{\mathcal{D}^b(B)}(T_{\bullet})\rightarrow {\rm End}_{\mathcal{D}^b(A)}(T_{\bullet}\otimes_BA) $ is an $ H $-Galois Frobenius extension if $ A/B $ is an $ H $-Galois Frobenius extension. Finally, for any perfect recollement of derived categories of $ H $-module algebras, we apply the above results to construct a perfect recollement of derived categories of their smash product algebras and generalize it to $ n $-recollements.
ISSN:2473-6988
2473-6988
DOI:10.3934/math.2023165