Bottlenecks, drift and differentiation: the fragmented population structureof the saltmarsh beetle Pogonus chalceus

We investigated the distribution of genetic variation within and between 10 fragmented populations of the saltmarsh beetle Pogonus chalceus in the region of Flanders (Belgium) representing all extant populations of the species in that region by using allozyme and microsatellite markers. Beetle popul...

Full description

Saved in:
Bibliographic Details
Published inGenetica Vol. 124; no. 2-3; pp. 167 - 177
Main Authors Dhuyvetter, H, Gaublomme, E, Desender, K
Format Journal Article
LanguageEnglish
Published The Hague Springer Nature B.V 01.07.2005
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We investigated the distribution of genetic variation within and between 10 fragmented populations of the saltmarsh beetle Pogonus chalceus in the region of Flanders (Belgium) representing all extant populations of the species in that region by using allozyme and microsatellite markers. Beetle population size and habitat area failed to explain a significant part of the genetic variability. Microsatellite allelic diversity was sensitive to population size differences but not to saltmarsh area estimates. Heterozygosities of both marker types and allozyme allelic diversity on the other hand showed no significant correlation to population size and saltmarsh area. There was also no correlation between geographical and genetic distances among populations. Evidence was found for past bottlenecks in some of the smallest populations. Maximum likelihood methods using the coalescent approach revealed that the proportion of common ancestors was also high in those small populations. 35% of our studied individuals, especially in the largest populations showed a relative wing size smaller than 70%. Moreover, only six out of the 10 studied populations showed a few individuals with functional flight musculature. In conclusion, the overall pattern of distribution of genetic variation and the low flight capacity did not support an equilibrium model of population structure in P. chalceus, but mainly suggested a lack of regional equilibrium with both drift and gene flow influences.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0016-6707
1573-6857
DOI:10.1007/s10709-005-1157-5