First Report of white root rot of hemp (Cannabis sativa L.) caused by Dematophora necatrix in Campania region (Southern Italy)

Industrial hemp (Cannabis sativa L.) was cultivated in Italy until the end of the Second World War. Since then, it has been abandoned and substituted with other crops mainly due to legal restrictions and public concerns. Public legislation passed in 2016, has allowed for the production of hemp seeds...

Full description

Saved in:
Bibliographic Details
Published inPlant disease
Main Authors Sorrentino, Roberto, Baldi, Gian Maria, Battaglia, Valerio, Raimo, Francesco, Piccirillo, Giulio, Lahoz, Ernesto
Format Journal Article
LanguageEnglish
Published United States 01.10.2021
Subjects
Online AccessGet more information

Cover

Loading…
More Information
Summary:Industrial hemp (Cannabis sativa L.) was cultivated in Italy until the end of the Second World War. Since then, it has been abandoned and substituted with other crops mainly due to legal restrictions and public concerns. Public legislation passed in 2016, has allowed for the production of hemp seeds, flowers and fibers (law n. 242/2016). During a 2019 survey on hemp sanitary status in the province of Naples (40°57'6"12 N, 14°22'37"56 E), hemp 'Kompolty' with symptoms of root rot were observed at a private farm and collected for further analysis at the phytosanitary laboratory of CREA in Caserta. Death generally occurred within 2-3 weeks after the appearance of the first symptoms, occurring on ca. 10% of plants, consisting of yellowing, canopy wilt and signs of roots covered with white mycelium and fan-like mycelium under the bark. The causal agent, was isolated from small root segments, excised from symptomatic plants, the surface was disinfected with 2% sodium hypochlorite, placed on potato dextrose agar (PDA) amended with streptomycin sulphate (100mg/L) and incubated in the dark at 25°C for 5 days. Small pieces (2-3 mm) at the edge of the resulting colonies were sub-cultured onto PDA and incubated at 25°C in the dark for one week. The mycelia from 15 isolates showed pear-shaped swellings adjacent to the septa. The conidia were aseptate, hyaline, ellipsoid to ovoid, and 3-5 × 2.5-3 µm (n=50). Based on the morphological characteristics, the fungus was identified as Rosellinia necatrix Berl. ex Prill. (Singleton et al., 1992) a fungus taxonomically revised to Dematophora necatrix R. Hartig (Wittstein et al., 2020). To confirm the identification, total DNA was extracted from five isolates using a DNeasy Plant Mini Kit (Qiagen, Hilden, Germany) and the ITS spacer was PCR-amplified with primers ITS1-ITS4 (White et al., 1990). The size-expected amplicons of 536 bp were purified and sequenced, the resulting sequence was trimmed and deposited in GenBank under the accession number MK937913. BLAST-n analysis revealed 98.83% nucleotide identity with some representative isolates of D. necatrix (MK888684.1; KT343972.1). To fulfill Koch's postulates, the pathogenicity tests were carried out on fifteen 4-weeks-old potted hemp plants 'Kompolty'. The inoculation was performed by adding 3 g of millet seeds inoculated with ten mycelial plugs, taken from the margins of a D. necatrix actively growing colony, per liter of sterile peat and perlite substrate in single pots. Moreover, ten hemp plants were inoculated with sterilized millet seed and served as negative controls. All plants were incubated at 25°C. After three weeks, inoculated plants exhibited foliar chlorosis, apical wilting, and death in two weeks, similar to what was observed in the field. Control plants did not show any symptoms. The fungus was isolated from the roots in all fifteen inoculated plants and confirmed to be D. necatrix based on morphological and molecular analysis, carried out with a second primer pair EF1-983F/ EF1-2218R targeting the transcription elongation factor 1- (Rehner and Buckley., 2005) (MW541068) that showed 99.67% nt in BLAST-n analysis. To our knowledge, this is the first report of D. necatrix infecting hemp in Europe. The farm where the problem arose has a history of cultivation for the production of apples for over 30 years. Therefore, an adaptation of D. necatrix to the new host is hypothesized. An in-depth knowledge on the diseases of hemp will be needed to relaunch hemp cultivation in this area.
ISSN:0191-2917
DOI:10.1094/PDIS-07-20-1521-PDN