BiTCAN: A emotion recognition network based on saliency in brain cognition
In recent years, with the continuous development of artificial intelligence and brain-computer interfaces, emotion recognition based on electroencephalogram (EEG) signals has become a prosperous research direction. Due to saliency in brain cognition, we construct a new spatio-temporal convolutional...
Saved in:
Published in | Mathematical biosciences and engineering : MBE Vol. 20; no. 12; pp. 21537 - 21562 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
AIMS Press
05.12.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, with the continuous development of artificial intelligence and brain-computer interfaces, emotion recognition based on electroencephalogram (EEG) signals has become a prosperous research direction. Due to saliency in brain cognition, we construct a new spatio-temporal convolutional attention network for emotion recognition named BiTCAN. First, in the proposed method, the original EEG signals are de-baselined, and the two-dimensional mapping matrix sequence of EEG signals is constructed by combining the electrode position. Second, on the basis of the two-dimensional mapping matrix sequence, the features of saliency in brain cognition are extracted by using the Bi-hemisphere discrepancy module, and the spatio-temporal features of EEG signals are captured by using the 3-D convolution module. Finally, the saliency features and spatio-temporal features are fused into the attention module to further obtain the internal spatial relationships between brain regions, and which are input into the classifier for emotion recognition. Many experiments on DEAP and SEED (two public datasets) show that the accuracies of the proposed algorithm on both are higher than 97%, which is superior to most existing emotion recognition algorithms. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1551-0018 1551-0018 |
DOI: | 10.3934/mbe.2023953 |