Low-thickness Ti–Mn–Zn-substituted Ba-hexaferrite/MWCNT nanocomposites with enhanced magnetic, dielectric, and microwave absorption properties

In this work, the various concentrations of Ti, Mn, and Zn were substituted instead of ferric cation of M-type Ba-hexaferrite through the modified sol–gel auto-combustion synthesis procedure. The resulting nanoparticles were compounded with multi-walled carbon nanotubes (MWCNTs), and thus, the BaTi...

Full description

Saved in:
Bibliographic Details
Published inEuropean physical journal plus Vol. 137; no. 10; p. 1171
Main Authors Tabatabaei Fard, Seyed Mahmood, Moradi, Mahmood, Golshan, Mohammad Mehdi
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 22.10.2022
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, the various concentrations of Ti, Mn, and Zn were substituted instead of ferric cation of M-type Ba-hexaferrite through the modified sol–gel auto-combustion synthesis procedure. The resulting nanoparticles were compounded with multi-walled carbon nanotubes (MWCNTs), and thus, the BaTi 2 x Mn x Zn x Fe 12−4 x O 19 /MWCNT ( x  = 0.0, 0.2, 0.3, 0.4, and 0.5) nanocomposites were formed. With the help of Rietveld refinement on XRD patterns in FullProf software, the successful substitution of cations in the single-phase hexagonal lattice structure was confirmed, and the tendency of each cation to occupy five ferric ion sites was investigated. The FTIR analysis was employed to recognition of chemical bonds and confirmation of crystalline structure. FE-SEM and TEM images confirmed the presence of nanoparticles sticking to MWCNTs and homogenous dispersing. The VSM analysis showed that the overall trends of M S , M r , and H C are descending with increasing x , except for a few points described according to the refinement results. The nanocomposites exhibited appropriate microwave absorption properties at the whole X and Ku frequency bands by thickness change of only 0.8 mm. The minimum reflection loss was achieved to − 31.5 dB (equivalent to more than 99.9% energy absorption) at a low thickness of just 0.9 mm, and the maximum bandwidth reached 3.89 GHz. As a result, these developed nanocomposites are recommended for use in equipment such as aircraft and UAVs, where the thickness and weight of the absorbing material are of particular importance.
ISSN:2190-5444
2190-5444
DOI:10.1140/epjp/s13360-022-03404-0