Calcium-tracers disclose the site of biomineralization in inner ear otoliths of fish

Since changing gravity (concerning direction and amplitude) strongly affects inner ear otolith growth and otolithic calcium incorporation in developing fish, it was the aim of the present study to locate the site of mineralization in order to gain cues and insights into the provenance of the otolith...

Full description

Saved in:
Bibliographic Details
Published inAdvances in space research Vol. 33; no. 8; pp. 1401 - 1405
Main Authors Beier, M., Anken, R.H., Rahmann, H.
Format Journal Article
LanguageEnglish
Published England Elsevier Ltd 2004
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Since changing gravity (concerning direction and amplitude) strongly affects inner ear otolith growth and otolithic calcium incorporation in developing fish, it was the aim of the present study to locate the site of mineralization in order to gain cues and insights into the provenance of the otoliths inorganic compounds. Therefore, larval cichlid fish ( Oreochromis mossambicus) were incubated in the calcium-tracer alizarin complexone (AC; red fluorescence). After maintenance in aquarium water for various periods (1, 2, 3, 6, 9 and 12 h; 1, 2, 3, 5, 6, 7, 15, 29, 36 and 87 d), the animals were incubated in the calcium-tracer calcein (CAL; green fluorescence). AC thus labeled calcium being incorporated at the beginning of the experiment and would subsequently accompany calcium in the course of a possible dislocation, whereas CAL visualized calcium being deposited right at the end of the test. Subsequently, the otoliths were analyzed using a laser scanning microscope and it was shown that the initial site of calcium incorporation was located directly adjacent to the sensory epithelium and the otolithic membrane. Later, calcium deposits were also found on further regions of the otoliths’ surface area, where they had been shifted to in the course of dislocation. This finding strongly indicates that the sensory epithelium plays a prominent role in otolithic biomineralization, which is in full agreement with an own electron microscopical study [ELGRA News 23 (2003) 63].
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0273-1177
1879-1948
DOI:10.1016/j.asr.2003.09.044