Coalescence, evaporation and particle deposition of consecutively printed colloidal drops

The particle deposition dynamics of two consecutively printed evaporating colloidal drops is examined using a fluorescence microscope and a synchronized side-view camera. The results show that the relaxation time of the water-air interface of the merged drop is shorter than that of a single drop imp...

Full description

Saved in:
Bibliographic Details
Published inSoft matter Vol. 8; no. 35; pp. 9205 - 9213
Main Authors Yang, Xin, Chhasatia, Viral H., Shah, Jaymeen, Sun, Ying
Format Journal Article
LanguageEnglish
Published 01.01.2012
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The particle deposition dynamics of two consecutively printed evaporating colloidal drops is examined using a fluorescence microscope and a synchronized side-view camera. The results show that the relaxation time of the water-air interface of the merged drop is shorter than that of a single drop impacting on a dry surface. It is also found that both morphology and particle distribution uniformity of the deposit change significantly with varying jetting delay and spatial spacing between two drops. As the drop spacing increases while keeping jetting delay constant, the circularity of the coalesced drop reduces. For the regime where the time scale for drop evaporation is comparable with the relaxation time scale for two drops to completely coalesce, the capillary flow induced by the local curvature variation of the air-water interface redistributes particles inside a merged drop, causing suppression of the coffee-ring effect for the case of a high jetting frequency while resulting in a region of particle accumulation in the middle of the merged drop at a low jetting frequency. By tuning the interplay of wetting, evaporation, capillary relaxation, and particle assembly, the deposition morphology of consecutively printed colloidal drops can hence be controlled.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:1744-683X
1744-6848
DOI:10.1039/c2sm25906k