Efficient integral image computation on the GPU
We present an integral image algorithm that can run in real-time on a Graphics Processing Unit (GPU). Our system exploits the parallelisms in computation via the NIVIDA CUDA programming model, which is a software platform for solving non-graphics problems in a massively parallel high-performance fas...
Saved in:
Published in | 2010 IEEE Intelligent Vehicles Symposium pp. 528 - 533 |
---|---|
Main Authors | , , |
Format | Conference Proceeding |
Language | English |
Published |
IEEE
01.06.2010
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present an integral image algorithm that can run in real-time on a Graphics Processing Unit (GPU). Our system exploits the parallelisms in computation via the NIVIDA CUDA programming model, which is a software platform for solving non-graphics problems in a massively parallel high-performance fashion. This implementation makes use of the work-efficient scan algorithm that is explicated in. Treating the rows and the columns of the target image as independent input arrays for the scan algorithm, our method manages to expose a second level of parallelism in the problem. We compare the performance of the parallel approach running on the GPU with the sequential CPU implementation across a range of image sizes and report a speed up by a factor of 8 for a 4 megapixel input. We further investigate the impact of using packed vector type data on the performance, as well as the effect of double precision arithmetic on the GPU. |
---|---|
ISBN: | 1424478669 9781424478668 |
ISSN: | 1931-0587 2642-7214 |
DOI: | 10.1109/IVS.2010.5548142 |