The Effect of Synthesis Condition of the Ability of Swelling, Adsorption, and Desorption of Zwitterionic Sulfobetaine-Based Gel
This study explored the ion adsorption of heavy metals using a copolymer gel containing zwitterionic betaine N,N'-dimethyl(acrylamidopropyl)ammonium propane sulfonate (DMAAPS) as the ion adsorbent agent and N-isopropylacrylamide (NIPAM) as the thermosensitive agent. We investigated the effect o...
Saved in:
Published in | International Journal of Technology Vol. 11; no. 2; pp. 299 - 309 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Universitas Indonesia
21.04.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This study explored the ion adsorption of heavy metals using a copolymer gel containing zwitterionic betaine N,N'-dimethyl(acrylamidopropyl)ammonium propane sulfonate (DMAAPS) as the ion adsorbent agent and N-isopropylacrylamide (NIPAM) as the thermosensitive agent. We investigated the effect of ion monomer concentration and type and of temperature on the adsorption, desorption, and swelling properties and their correlation. A free-radical polymerization reaction was performed to prepare the thermosensitive NIPAM-co-DMAAPS gel using accelerators such as N,N,N',N'-tetramethylethylenediamine, ammonium peroxydisulfate as the initiator, and N,N'-methylenebisacrylamide at a concentration of 10 mmol/L as the cross-linker. An analysis was then performed on the gel’s adsorption, desorption, and reversible adsorption-desorption properties using atomic absorption spectrophotometry. The results showed that the swelling degree and adsorption values increased as the temperature decreased in the gel with NIPAM:DMAAPS ratios of 9:1 and 8:2. In contrast, in a 7:3 ratio, the swelling degree increased significantly, and the adsorption ability decreased as the temperature increased. The higher the temperature, the smaller the quantity of Zn2+ and Pb2+ ions adsorbed and desorbed. The results indicate that in nitrate solution, Pb2+ ions are more easily adsorbed than Zn2+ ions. |
---|---|
ISSN: | 2086-9614 2087-2100 |
DOI: | 10.14716/ijtech.v11i2.3860 |