A highly sensitive humidity sensor with a novel hole array structure using a polyimide sensing layer

If the contact area of water vapor with the sensing part in the humidity sensor is increased, the sensitivity will be increased. In this paper, a new type of capacitive humidity sensor was demonstrated in order to increase the sensitivity of the humidity sensor utilizing MEMS technology. The sensor...

Full description

Saved in:
Bibliographic Details
Published inRSC advances Vol. 4; no. 61; pp. 32075 - 32080
Main Authors Choi, Kyo Sang, Kim, Deok Su, Yang, Hee Jun, Ryu, Min Soo, Chang, Sung Pil
Format Journal Article
LanguageEnglish
Published 01.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:If the contact area of water vapor with the sensing part in the humidity sensor is increased, the sensitivity will be increased. In this paper, a new type of capacitive humidity sensor was demonstrated in order to increase the sensitivity of the humidity sensor utilizing MEMS technology. The sensor is composed of a SiO sub(2) insulation layer, a bottom electrode, a polyimide layer with a hole array as a sensing layer and a top electrode with a hole array. The holes in the sensing layer and top electrode are made to increase the contact area of the water vapor with the polyimide sensing layer. The size of the sensor is 3.6 mm 3.6 mm with a 0.8 mu m thick polyimide based sensing layer. In order to obtain the highest sensitivity from the sensor of these dimensions, a simulation was carried out with parameters of different minimum distances between holes, the numbers of hole, and hole diameters. The final sensors were designed, and fabricated based on simulation results. The output of the humidity sensor was found to be linearly dependent on relative humidity in the range 20 to 90% and the sensitivities of the humidity sensors showed values from 14.43 pF per %RH to 22.29 pF per %RH. The maximum hysteresis was 1.08% for a sensor with a sensitivity of 14.43 pF per %RH.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2046-2069
2046-2069
DOI:10.1039/C4RA02692F