Improving solid oxide fuel cells with yttria-doped ceria interlayers by atomic layer deposition
The performance of solid oxide fuel cells (SOFCs) was significantly enhanced through surface modification of yttria-stabilized zirconia (YSZ) electrolyte by doped ceria interlayers. Ultra-thin yttria-doped-ceria (YDC) layers were fabricated by atomic layer deposition (ALD). The doping concentrations...
Saved in:
Published in | Journal of materials chemistry Vol. 21; no. 29; pp. 10903 - 10906 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.01.2011
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The performance of solid oxide fuel cells (SOFCs) was significantly enhanced through surface modification of yttria-stabilized zirconia (YSZ) electrolyte by doped ceria interlayers. Ultra-thin yttria-doped-ceria (YDC) layers were fabricated by atomic layer deposition (ALD). The doping concentrations of Y2O3 were finely tuned by changing the Ce : Y pulsing ratios. YDC layers were inserted between bulk YSZ electrolyte and a porous Pt cathode. The performance of SOFCs with different doping concentrations of YDC interlayers was measured using the linear sweep voltammetry method at operating temperatures between 300 and 500 [degree]C. The fuel cell performance was enhanced by a factor of 2-3.6 within the Y2O3 doping range of 12-17 M%. The enhanced performance was attributed to an increased oxide ion incorporation rate at the electrode/electrolyte interface. |
---|---|
Bibliography: | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 0959-9428 1364-5501 |
DOI: | 10.1039/c1jm11550b |