Modeling of NBTI Kinetics in Replacement Metal Gate Si and SiGe FinFETs-Part-II: AC Stress and Recovery

An ultrafast (10-<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula> delay) measurement technique is used to characterize ac negative-bias temperature instability-induced threshold voltage shift (<inline-formula> <tex-math...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on electron devices Vol. 65; no. 5; pp. 1707 - 1713
Main Authors Parihar, Narendra, Southwick, Richard G., Wang, Miaomiao, Stathis, James H., Mahapatra, Souvik
Format Journal Article
LanguageEnglish
Published IEEE 01.05.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:An ultrafast (10-<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula> delay) measurement technique is used to characterize ac negative-bias temperature instability-induced threshold voltage shift (<inline-formula> <tex-math notation="LaTeX">\Delta \text {V}_\text {T} </tex-math></inline-formula>) in replacement metal-gate-based high-K metal gate Si and SiGe p-FinFETs. Time kinetics of stress and recovery, voltage acceleration factor, temperature activation energy (<inline-formula> <tex-math notation="LaTeX">\text {E}_\text {A} </tex-math></inline-formula>), frequency (f), and pulse duty cycle (PDC) dependence are shown for different germanium percentages (Ge%) in the channel and nitrogen percentages (N%) in the gate insulator. A comprehensive physical model framework based on uncorrelated contributions from interface (<inline-formula> <tex-math notation="LaTeX">\Delta \text {V}_\text {IT} </tex-math></inline-formula>) and bulk oxide (<inline-formula> <tex-math notation="LaTeX">\Delta \text {V}_\text {OT} </tex-math></inline-formula>) trap generation and hole trapping in preexisting defects (<inline-formula> <tex-math notation="LaTeX">\Delta \text {V}_\text {HT} </tex-math></inline-formula>) is used to explain the measured data at different stress biases (<inline-formula> <tex-math notation="LaTeX">\text {V}_\text {GSTR} </tex-math></inline-formula>), temperatures (T), f, and PDCs. Direct-current I-V measurements are used to independently verify the interface-trap generation component for ac stress. End-of-life degradation for different processes under dc and ac conditions is estimated by using the calibrated model and compared to predictions from conventional analytical methods.
ISSN:0018-9383
1557-9646
DOI:10.1109/TED.2018.2819020