A novel, environmentally friendly dual-signal water toxicity biosensor developed through the continuous release of Fe3

In this work, a novel, environmentally friendly and simple electrochemical/colorimetric water toxicity biosensor was rationally developed by the continuous release of Fe3+ in a medium. The bioluminescent bacterium Vibrio Fischeri (V. fischeri) was used for the first time as a model bacterium to asse...

Full description

Saved in:
Bibliographic Details
Published inBiosensors & bioelectronics Vol. 220; p. 114864
Main Authors Yu, Dengbin, Li, Rongbing, Rong, Kai, Fang, Youxing, Liu, Ling, Yu, Hongwen, Dong, Shaojun
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this work, a novel, environmentally friendly and simple electrochemical/colorimetric water toxicity biosensor was rationally developed by the continuous release of Fe3+ in a medium. The bioluminescent bacterium Vibrio Fischeri (V. fischeri) was used for the first time as a model bacterium to assess water toxicity for a mediated electrochemical biosensor. The green substance composited by Prussian blue (PB) and yellow K3[Fe(CN)6] was used as the indicator of the colorimetric biosensor. To obtain an ideal electrochemical/colorimetric performance, analytical conditions of the bioassay including NaCl concentration, temperature, concentrations of cells and K3[Fe(CN)6], and incubation time were optimized to 0.5%, 22 oC, 4 (OD600), 10 mM, and 15 min, respectively. The IC50 values of Zn2+, Hg2+, Cd2+ and 3,5-dichlorophenol (3,5-DCP) obtained by electrochemical method were 4.7, 5.0, 17.6 and 10.6 mg/L, respectively. The limits of detection (LODs) of Zn2+, Hg2+, Cd2+ and 3,5-DCP obtained by the naked eye were 6.3, 1.6, 12.5 and 12.5 mg/L, respectively. Two real water samples taken from tap water pipe and the Yitong river were also detected sensitively, and the inhibition ratios obtained were 3.8% and 14.0%, respectively. These results indicate that the V. fischeri-based bioassay is simple, sensitive and inexpensive, which is promising alternative for acute biotoxicity assessment. [Display omitted]
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2022.114864