On the Optimality of the Kautz-Singleton Construction in Probabilistic Group Testing

We consider the probabilistic group testing problem where <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula> random defective items in a large population of <inline-formula> <tex-math notation="LaTeX">N </tex-math>...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on information theory Vol. 65; no. 9; pp. 5592 - 5603
Main Authors Inan, Huseyin A., Kairouz, Peter, Wootters, Mary, Ozgur, Ayfer
Format Journal Article
LanguageEnglish
Published New York IEEE 01.09.2019
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We consider the probabilistic group testing problem where <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula> random defective items in a large population of <inline-formula> <tex-math notation="LaTeX">N </tex-math></inline-formula> items are identified with high probability by applying binary tests. It is known that the <inline-formula> <tex-math notation="LaTeX">\Theta (d \log N) </tex-math></inline-formula> tests are necessary and sufficient to recover the defective set with vanishing probability of error when <inline-formula> <tex-math notation="LaTeX">d = O(N^{\alpha }) </tex-math></inline-formula> for some <inline-formula> <tex-math notation="LaTeX">\alpha \in (0, 1) </tex-math></inline-formula>. However, to the best of our knowledge, there is no explicit (deterministic) construction achieving <inline-formula> <tex-math notation="LaTeX">\Theta (d \log N) </tex-math></inline-formula> tests in general. In this paper, we show that a famous construction introduced by Kautz and Singleton for the combinatorial group testing problem (which is known to be suboptimal for combinatorial group testing for moderate values of <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>) achieves the order optimal <inline-formula> <tex-math notation="LaTeX">\Theta (d \log N) </tex-math></inline-formula> tests in the probabilistic group testing problem when <inline-formula> <tex-math notation="LaTeX">d = \Omega (\log ^{2}\,\,N) </tex-math></inline-formula>. This provides a strongly explicit construction achieving the order optimal result in the probabilistic group testing setting for a wide range of values of <inline-formula> <tex-math notation="LaTeX">d </tex-math></inline-formula>. To prove the order-optimality of Kautz and Singleton's construction in the probabilistic setting, we provide a novel analysis of the probability of a non-defective item being covered by a random defective set directly, rather than arguing from combinatorial properties of the underlying code, which has been the main approach in the literature. Furthermore, we use a recursive technique to convert this construction into one that can also be efficiently decoded with only a log-log factor increase in the number of tests.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2019.2902397