Resistive Hydrogen Detection Sensors based on 2 Dimensions – Molybdenum Disulfide Decorated by Palladium Nanoparticles
This research presents a resistive-type hydrogen (H2) gas sensor based on a composite of palladium nanoparticles (Pd-NP) decorated on 2D-molybdenum disulfide (MoS2) layer. The sensor fabrication involves synthesizing MoS2 and coating Pd by DC sputtering technique. MoS2 has been adopted for its high...
Saved in:
Published in | Journal of semiconductor technology and science Vol. 23; no. 5; pp. 258 - 264 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
대한전자공학회
01.10.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | This research presents a resistive-type hydrogen (H2) gas sensor based on a composite of palladium nanoparticles (Pd-NP) decorated on 2D-molybdenum disulfide (MoS2) layer. The sensor fabrication involves synthesizing MoS2 and coating Pd by DC sputtering technique. MoS2 has been adopted for its high selectivity for H2, wide operating temperature range, reliability, and low power consumption. Pd has high catalytic properties for H2 and performs a H2 adsorption mechanism through resistance transition. In this study, we propose a Pd-decorated MoS2 structure and introduce the chemical resistance mechanism within the channel. The limit of detection (LOD), sensitivity and response time of the fabricated H2 gas sensors are optimized and analyzed. Finally, the nanocomposites network based H2 sensor can promote the utilization of various industries and discuss the issues in sensor applications. KCI Citation Count: 0 |
---|---|
ISSN: | 1598-1657 2233-4866 2233-4866 1598-1657 |
DOI: | 10.5573/JSTS.2023.23.5.258 |