Photocatalytic solar hydrogen production from water on a 100-m2 scale
The unprecedented impact of human activity on Earth’s climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable fr...
Saved in:
Published in | Nature (London) Vol. 598; no. 7880; pp. 304 - 307 |
---|---|
Main Authors | , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.10.2021
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The unprecedented impact of human activity on Earth’s climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy
1
,
2
. The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale
3
. Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up
1
,
2
—provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m
2
panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst
4
, we here report safe operation of a 100-m
2
array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane
5
. The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency.
Carbon-neutral hydrogen can be produced through photocatalytic water splitting, as demonstrated here with a 100-m
2
array of panel reactors that reaches a maximum conversion efficiency of 0.76%. |
---|---|
AbstractList | The unprecedented impact of human activity on Earth's climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy1,2. The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale3. Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up1,2-provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m2 panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst4, we here report safe operation of a 100-m2 array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane5. The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency. The unprecedented impact of human activity on Earth’s climate and the ongoing increase in global energy demand have made the development of carbon-neutral energy sources ever more important. Hydrogen is an attractive and versatile energy carrier (and important and widely used chemical) obtainable from water through photocatalysis using sunlight, and through electrolysis driven by solar or wind energy 1 , 2 . The most efficient solar hydrogen production schemes, which couple solar cells to electrolysis systems, reach solar-to-hydrogen (STH) energy conversion efficiencies of 30% at a laboratory scale 3 . Photocatalytic water splitting reaches notably lower conversion efficiencies of only around 1%, but the system design is much simpler and cheaper and more amenable to scale-up 1 , 2 —provided the moist, stoichiometric hydrogen and oxygen product mixture can be handled safely in a field environment and the hydrogen recovered. Extending our earlier demonstration of a 1-m 2 panel reactor system based on a modified, aluminium-doped strontium titanate particulate photocatalyst 4 , we here report safe operation of a 100-m 2 array of panel reactors over several months with autonomous recovery of hydrogen from the moist gas product mixture using a commercial polyimide membrane 5 . The system, optimized for safety and durability, and remaining undamaged on intentional ignition of recovered hydrogen, reaches a maximum STH of 0.76%. While the hydrogen production is inefficient and energy negative overall, our findings demonstrate that safe, large-scale photocatalytic water splitting, and gas collection and separation are possible. To make the technology economically viable and practically useful, essential next steps are reactor and process optimization to substantially reduce costs and improve STH efficiency, photocatalyst stability and gas separation efficiency. Carbon-neutral hydrogen can be produced through photocatalytic water splitting, as demonstrated here with a 100-m 2 array of panel reactors that reaches a maximum conversion efficiency of 0.76%. |
Author | Yamaguchi, Masaharu Tokudome, Hiromasa Okunaka, Sayuri Nakabayashi, Mamiko Akiyama, Seiji Watanabe, Tomoaki Shibata, Naoya Takata, Tsuyoshi Nishiyama, Hiroshi Nagatsuma, Yoshie Hisatomi, Takashi Maehara, Yoshiki Narushima, Ryoichi Domen, Kazunari Yamada, Taro Kuromiya, Yasuko |
Author_xml | – sequence: 1 givenname: Hiroshi orcidid: 0000-0003-2065-3773 surname: Nishiyama fullname: Nishiyama, Hiroshi organization: Office of University Professors, The University of Tokyo – sequence: 2 givenname: Taro surname: Yamada fullname: Yamada, Taro organization: Office of University Professors, The University of Tokyo – sequence: 3 givenname: Mamiko orcidid: 0000-0001-6101-0382 surname: Nakabayashi fullname: Nakabayashi, Mamiko organization: Institute of Engineering Innovation, School of Engineering, The University of Tokyo – sequence: 4 givenname: Yoshiki surname: Maehara fullname: Maehara, Yoshiki organization: Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), FUJIFILM Corporation, Ashigarakami-gun – sequence: 5 givenname: Masaharu surname: Yamaguchi fullname: Yamaguchi, Masaharu organization: Office of University Professors, The University of Tokyo – sequence: 6 givenname: Yasuko surname: Kuromiya fullname: Kuromiya, Yasuko organization: Office of University Professors, The University of Tokyo – sequence: 7 givenname: Yoshie surname: Nagatsuma fullname: Nagatsuma, Yoshie organization: Office of University Professors, The University of Tokyo – sequence: 8 givenname: Hiromasa orcidid: 0000-0001-6624-0515 surname: Tokudome fullname: Tokudome, Hiromasa organization: Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Research Institute, TOTO Ltd – sequence: 9 givenname: Seiji surname: Akiyama fullname: Akiyama, Seiji organization: Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Mitsubishi Chemical Corporation, Science & Innovation Center – sequence: 10 givenname: Tomoaki surname: Watanabe fullname: Watanabe, Tomoaki organization: Department of Applied Chemistry, School of Science and Technology, Meiji University – sequence: 11 givenname: Ryoichi surname: Narushima fullname: Narushima, Ryoichi organization: Office of University Professors, The University of Tokyo – sequence: 12 givenname: Sayuri orcidid: 0000-0003-3888-7201 surname: Okunaka fullname: Okunaka, Sayuri organization: Japan Technological Research Association of Artificial Photosynthetic Chemical Process (ARPChem), Research Institute, TOTO Ltd., Global Zero Emission Research Center (GZR), National Institution of Advanced Industrial Science and Technology (AIST) – sequence: 13 givenname: Naoya orcidid: 0000-0003-3548-5952 surname: Shibata fullname: Shibata, Naoya organization: Institute of Engineering Innovation, School of Engineering, The University of Tokyo – sequence: 14 givenname: Tsuyoshi surname: Takata fullname: Takata, Tsuyoshi organization: Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University – sequence: 15 givenname: Takashi orcidid: 0000-0002-5009-2383 surname: Hisatomi fullname: Hisatomi, Takashi organization: Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University – sequence: 16 givenname: Kazunari orcidid: 0000-0001-7995-4832 surname: Domen fullname: Domen, Kazunari email: domen@chemsys.t.u-tokyo.ac.jp organization: Office of University Professors, The University of Tokyo, Research Initiative for Supra-Materials, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University |
BookMark | eNp9kEtLxDAUhYOM4Dj6B1wV3LiJ3jyapEsZxgcM6ELXIU1v50GnGZMWmX9vxwqCC1eXC985HL5zMmlDi4RcMbhlIMxdkiw3igJnFEQBmooTMmVSKyqV0RMyBeCGghHqjJyntAWAnGk5JYvXdeiCd51rDt3GZyk0LmbrQxXDCttsH0PV-24T2qyOYZd9ug5jNnwuYwB0x7PkXYMX5LR2TcLLnzsj7w-Lt_kTXb48Ps_vl9RzJQTVGnOlTWkcgpYMvQfBaldCJSst0HCPzmNd5ICOGVVx5TXToixVbaASuZiRm7F32PXRY-rsbpM8No1rMfTJ8lzJImeFKgb0-g-6DX1sh3UDZbiUTBoxUHykfAwpRaztPm52Lh4sA3s0a0ezdjBrv83aY0iMoTTA7Qrjb_U_qS_iBXv_ |
CitedBy_id | crossref_primary_10_1039_D2QI01665F crossref_primary_10_1002_adfm_202215242 crossref_primary_10_1038_s41560_023_01247_2 crossref_primary_10_1016_j_ccr_2022_214970 crossref_primary_10_1016_j_jiec_2022_04_032 crossref_primary_10_2139_ssrn_4098270 crossref_primary_10_1002_anie_202301239 crossref_primary_10_1007_s11708_022_0817_9 crossref_primary_10_1088_2515_7655_aca9fd crossref_primary_10_3390_catal13030461 crossref_primary_10_1021_acs_jpcc_2c05993 crossref_primary_10_1002_adma_202210164 crossref_primary_10_1016_j_ces_2023_119427 crossref_primary_10_1021_acsaem_1c03080 crossref_primary_10_1039_D3EE02695G crossref_primary_10_2139_ssrn_4159519 crossref_primary_10_1016_j_ceramint_2024_02_020 crossref_primary_10_1002_smll_202310414 crossref_primary_10_1016_j_mattod_2023_06_017 crossref_primary_10_1002_ange_202300224 crossref_primary_10_1038_s41467_022_33439_x crossref_primary_10_3390_nano12244428 crossref_primary_10_1021_acsami_3c13075 crossref_primary_10_1039_D3QI02619A crossref_primary_10_1016_j_cej_2024_151408 crossref_primary_10_1021_jacs_2c03161 crossref_primary_10_1038_s41570_023_00567_x crossref_primary_10_1002_ange_202116573 crossref_primary_10_1016_j_surfin_2023_103423 crossref_primary_10_1016_j_ijhydene_2022_08_026 crossref_primary_10_1016_j_ijhydene_2023_02_002 crossref_primary_10_1002_admt_202200390 crossref_primary_10_1016_j_ijhydene_2022_09_076 crossref_primary_10_1039_D2NR05207E crossref_primary_10_1039_D3TA03495J crossref_primary_10_1021_acscatal_2c02394 crossref_primary_10_1002_advs_202302206 crossref_primary_10_1016_j_jcat_2024_115615 crossref_primary_10_1016_j_ijhydene_2024_03_334 crossref_primary_10_1007_s40843_022_2067_5 crossref_primary_10_1016_j_apcatb_2023_122487 crossref_primary_10_1016_j_apcatb_2024_123893 crossref_primary_10_1016_j_matre_2023_100235 crossref_primary_10_1039_D3CY01703F crossref_primary_10_1007_s40843_023_2440_6 crossref_primary_10_1002_adma_202209141 crossref_primary_10_3390_molecules28124862 crossref_primary_10_1002_aenm_202200469 crossref_primary_10_1016_j_ijhydene_2022_09_079 crossref_primary_10_1002_ange_202208791 crossref_primary_10_1016_j_mtsust_2024_100819 crossref_primary_10_1021_acs_jpclett_4c01044 crossref_primary_10_3390_catal13030456 crossref_primary_10_1002_admi_202101680 crossref_primary_10_1002_aenm_202302064 crossref_primary_10_1002_ange_202404658 crossref_primary_10_1002_chem_202202734 crossref_primary_10_1039_D3SE01658G crossref_primary_10_1016_j_mtphys_2022_100767 crossref_primary_10_1021_acsenergylett_2c01850 crossref_primary_10_1039_D3SE00743J crossref_primary_10_1016_j_apcatb_2022_122180 crossref_primary_10_1002_cptc_202200293 crossref_primary_10_1016_S1872_2067_23_64648_0 crossref_primary_10_1039_D3EY00168G crossref_primary_10_1021_acsami_1c20511 crossref_primary_10_2139_ssrn_4161633 crossref_primary_10_1021_acsenergylett_3c00578 crossref_primary_10_1002_ange_202210849 crossref_primary_10_1016_j_checat_2022_01_007 crossref_primary_10_1021_acssuschemeng_2c02740 crossref_primary_10_1002_ange_202311549 crossref_primary_10_1016_j_jece_2024_112765 crossref_primary_10_1002_aenm_202200298 crossref_primary_10_1007_s10311_023_01580_8 crossref_primary_10_1016_j_jallcom_2023_169959 crossref_primary_10_1016_j_ijhydene_2023_10_281 crossref_primary_10_1039_D1CS01182K crossref_primary_10_1007_s12274_022_5078_8 crossref_primary_10_1002_smll_202401131 crossref_primary_10_1021_acs_jpcc_3c02942 crossref_primary_10_1016_j_cej_2022_135685 crossref_primary_10_1016_j_fuproc_2024_108072 crossref_primary_10_1016_j_jcat_2022_01_010 crossref_primary_10_1038_s41467_022_28364_y crossref_primary_10_1016_j_jcat_2022_01_011 crossref_primary_10_1021_acs_inorgchem_3c02907 crossref_primary_10_1007_s43979_023_00064_6 crossref_primary_10_1021_acs_jchemed_2c00587 crossref_primary_10_1016_j_jpap_2023_100181 crossref_primary_10_1007_s44251_023_00013_6 crossref_primary_10_1016_j_fuel_2024_131392 crossref_primary_10_1021_acsenergylett_3c01635 crossref_primary_10_1021_acsaem_2c02680 crossref_primary_10_1039_D3QM01019H crossref_primary_10_1007_s12598_023_02567_8 crossref_primary_10_1002_pssa_202400213 crossref_primary_10_1016_j_cej_2022_136785 crossref_primary_10_1016_j_cej_2022_137873 crossref_primary_10_1021_acsami_2c21049 crossref_primary_10_1021_acsenergylett_3c00783 crossref_primary_10_1021_acs_jpcc_1c07674 crossref_primary_10_1016_j_jmst_2024_05_005 crossref_primary_10_1016_j_fuel_2022_126894 crossref_primary_10_1021_acs_chemmater_3c03262 crossref_primary_10_1002_smll_202300460 crossref_primary_10_1016_j_jcis_2024_06_139 crossref_primary_10_1038_s41467_024_49373_z crossref_primary_10_1002_smll_202207234 crossref_primary_10_1002_ange_202209016 crossref_primary_10_1002_anie_202201482 crossref_primary_10_1021_acsanm_2c00777 crossref_primary_10_3390_photonics9090638 crossref_primary_10_1039_D4GC01321B crossref_primary_10_1002_ange_202307930 crossref_primary_10_1002_smll_202302875 crossref_primary_10_1016_j_elecom_2022_107373 crossref_primary_10_1016_j_ijhydene_2023_05_053 crossref_primary_10_1016_j_apsusc_2023_158794 crossref_primary_10_1021_acscatal_3c04389 crossref_primary_10_1002_adma_202403464 crossref_primary_10_1021_acsnano_2c12670 crossref_primary_10_1021_acsmaterialslett_4c00061 crossref_primary_10_1016_j_apcatb_2024_123807 crossref_primary_10_3390_nano12234212 crossref_primary_10_1021_acs_cgd_3c00929 crossref_primary_10_1016_j_jcis_2024_04_066 crossref_primary_10_1007_s11082_024_07036_9 crossref_primary_10_1021_acsami_4c04841 crossref_primary_10_1016_S1872_2067_23_64594_2 crossref_primary_10_1039_D2NR06607F crossref_primary_10_3390_nano12244497 crossref_primary_10_1016_j_gee_2024_01_001 crossref_primary_10_1002_smll_202207499 crossref_primary_10_1016_j_apsusc_2022_156081 crossref_primary_10_1021_acsami_3c17808 crossref_primary_10_1021_acsengineeringau_3c00034 crossref_primary_10_1038_s41565_023_01387_2 crossref_primary_10_1016_j_cej_2024_152330 crossref_primary_10_1016_j_ijhydene_2024_06_130 crossref_primary_10_1002_anie_202319882 crossref_primary_10_1016_j_cclet_2023_108724 crossref_primary_10_1016_j_jallcom_2024_174705 crossref_primary_10_1002_adma_202200180 crossref_primary_10_1016_j_ceramint_2023_05_006 crossref_primary_10_2139_ssrn_4093870 crossref_primary_10_1016_j_chphi_2022_100157 crossref_primary_10_1002_adma_202305285 crossref_primary_10_1016_j_cattod_2024_114608 crossref_primary_10_1039_D3NR00124E crossref_primary_10_1039_D1EE02222A crossref_primary_10_1016_j_cplett_2022_139955 crossref_primary_10_1002_cptc_202200209 crossref_primary_10_1038_s41467_024_44706_4 crossref_primary_10_1002_smll_202205266 crossref_primary_10_3390_en16083604 crossref_primary_10_1021_acs_jpclett_3c00504 crossref_primary_10_1016_j_ccr_2022_214773 crossref_primary_10_1038_s41467_022_32652_y crossref_primary_10_1021_acsenergylett_4c00144 crossref_primary_10_1039_D2SU00145D crossref_primary_10_1002_asia_202300145 crossref_primary_10_1039_D2NR01489K crossref_primary_10_1002_advs_202403128 crossref_primary_10_1007_s12274_022_4704_9 crossref_primary_10_1039_D3EY00073G crossref_primary_10_1016_j_checat_2023_100536 crossref_primary_10_1039_D1SC06015E crossref_primary_10_1002_cey2_280 crossref_primary_10_1039_D4CC02530J crossref_primary_10_1016_j_jechem_2024_02_051 crossref_primary_10_1016_j_catcom_2022_106514 crossref_primary_10_1002_anie_202310607 crossref_primary_10_1038_s44221_023_00139_9 crossref_primary_10_1039_D3TA02189K crossref_primary_10_1016_j_cej_2022_141032 crossref_primary_10_1016_j_nanoen_2023_109059 crossref_primary_10_1021_acs_chemmater_2c01290 crossref_primary_10_1038_s41929_022_00817_z crossref_primary_10_1002_ange_202209687 crossref_primary_10_1016_j_mtcomm_2022_103867 crossref_primary_10_1021_jacs_3c00547 crossref_primary_10_1002_anie_202112749 crossref_primary_10_1002_cssc_202202186 crossref_primary_10_1002_solr_202300110 crossref_primary_10_1039_D2SC02043B crossref_primary_10_1002_ange_202307909 crossref_primary_10_1016_j_seppur_2023_124040 crossref_primary_10_1016_j_apcatb_2022_121470 crossref_primary_10_1088_1402_4896_ace391 crossref_primary_10_1002_cssc_202400064 crossref_primary_10_35848_1347_4065_acbebe crossref_primary_10_1002_admi_202200115 crossref_primary_10_1002_smll_202304843 crossref_primary_10_1002_adfm_202402676 crossref_primary_10_1002_admi_202200119 crossref_primary_10_1007_s10562_022_04048_6 crossref_primary_10_1016_j_cej_2024_151219 crossref_primary_10_1039_D2CY00174H crossref_primary_10_1016_j_apsusc_2022_155199 crossref_primary_10_1021_acsomega_2c01674 crossref_primary_10_1038_s41565_023_01385_4 crossref_primary_10_4019_bjscc_81_66 crossref_primary_10_1039_D2TA09841E crossref_primary_10_3390_molecules28072971 crossref_primary_10_1016_j_jcat_2022_03_014 crossref_primary_10_1002_adfm_202203224 crossref_primary_10_1016_j_seppur_2024_127624 crossref_primary_10_1038_s41586_022_04978_6 crossref_primary_10_1039_D3SC03780K crossref_primary_10_1002_agt2_335 crossref_primary_10_1002_sus2_220 crossref_primary_10_1002_anie_202312938 crossref_primary_10_1039_D3SU00306J crossref_primary_10_1007_s11082_023_05306_6 crossref_primary_10_1016_j_jcis_2023_10_106 crossref_primary_10_1039_D3RA04049F crossref_primary_10_1016_j_jcat_2023_06_011 crossref_primary_10_1002_adma_202404618 crossref_primary_10_1002_ange_202319882 crossref_primary_10_1002_anie_202214143 crossref_primary_10_1039_D4TA00773E crossref_primary_10_1002_ange_202204880 crossref_primary_10_1007_s10854_023_10229_9 crossref_primary_10_1016_j_ijhydene_2023_07_296 crossref_primary_10_1002_smll_202300174 crossref_primary_10_24136_eq_2023_018 crossref_primary_10_1021_acscatal_4c00751 crossref_primary_10_1021_acs_accounts_2c00477 crossref_primary_10_1002_cptc_202300153 crossref_primary_10_1002_idm2_12159 crossref_primary_10_1002_anie_202201299 crossref_primary_10_1016_j_memsci_2023_122103 crossref_primary_10_3390_catal13050850 crossref_primary_10_1016_j_mtener_2023_101281 crossref_primary_10_1039_D2DT03272D crossref_primary_10_1002_ange_202310607 crossref_primary_10_1002_cssc_202400663 crossref_primary_10_1021_acsami_3c01629 crossref_primary_10_1016_j_jcis_2022_08_109 crossref_primary_10_1016_j_cej_2023_144395 crossref_primary_10_1039_D2NR02665A crossref_primary_10_1016_j_xcrp_2022_101211 crossref_primary_10_1039_D3CE00298E crossref_primary_10_1016_j_cej_2023_144146 crossref_primary_10_1016_j_ccr_2024_215837 crossref_primary_10_1002_adfm_202109423 crossref_primary_10_1039_D4TA03072A crossref_primary_10_1002_adma_202207765 crossref_primary_10_18321_ectj1516 crossref_primary_10_1016_j_enchem_2023_100116 crossref_primary_10_1039_D4SE00434E crossref_primary_10_1021_accountsmr_2c00095 crossref_primary_10_1002_adfm_202111501 crossref_primary_10_2139_ssrn_4184108 crossref_primary_10_1002_adfm_202309056 crossref_primary_10_1016_j_cej_2024_153373 crossref_primary_10_1021_acsaem_3c00219 crossref_primary_10_1021_acsami_3c16710 crossref_primary_10_1002_ange_202212234 crossref_primary_10_1007_s40843_024_2844_8 crossref_primary_10_1002_pssr_202200179 crossref_primary_10_1016_j_cej_2023_145462 crossref_primary_10_1016_j_ijhydene_2023_08_050 crossref_primary_10_1016_j_coelec_2022_101160 crossref_primary_10_1016_j_progpolymsci_2023_101734 crossref_primary_10_1039_D2TA00839D crossref_primary_10_1039_D3TA05613A crossref_primary_10_1021_jacs_2c02341 crossref_primary_10_1016_j_cej_2023_147636 crossref_primary_10_1016_j_jphotochemrev_2023_100649 crossref_primary_10_1039_D4TA02620A crossref_primary_10_1002_tcr_202300088 crossref_primary_10_1002_adma_202301307 crossref_primary_10_1007_s11708_024_0917_9 crossref_primary_10_1002_gch2_202300078 crossref_primary_10_1016_j_jmst_2022_12_069 crossref_primary_10_1007_s12598_023_02505_8 crossref_primary_10_1039_D3SC01118F crossref_primary_10_1063_5_0181625 crossref_primary_10_3390_molecules28062750 crossref_primary_10_3390_photonics9120968 crossref_primary_10_3390_nano12060946 crossref_primary_10_1016_j_jallcom_2022_164864 crossref_primary_10_1016_j_jcis_2022_06_109 crossref_primary_10_1016_j_apsusc_2023_158596 crossref_primary_10_1007_s11431_022_2192_6 crossref_primary_10_1126_sciadv_ade9044 crossref_primary_10_1016_j_jechem_2022_04_020 crossref_primary_10_1021_jacs_2c11025 crossref_primary_10_1063_5_0066931 crossref_primary_10_1021_acs_langmuir_3c00955 crossref_primary_10_1038_s41596_024_00992_2 crossref_primary_10_1038_s41893_024_01382_y crossref_primary_10_1021_acs_chemrev_1c01029 crossref_primary_10_1016_j_joule_2024_05_012 crossref_primary_10_1021_acsami_3c01683 crossref_primary_10_1002_cssc_202400450 crossref_primary_10_1016_j_ijhydene_2022_06_134 crossref_primary_10_1007_s11708_023_0889_1 crossref_primary_10_1002_advs_202309786 crossref_primary_10_1016_j_apsusc_2022_153844 crossref_primary_10_1016_j_cej_2024_149507 crossref_primary_10_1002_ange_202307490 crossref_primary_10_1021_acs_chemmater_2c03615 crossref_primary_10_1039_D2EE02680E crossref_primary_10_3390_molecules29112447 crossref_primary_10_1002_anie_202208791 crossref_primary_10_1007_s11164_022_04804_8 crossref_primary_10_1016_j_cej_2022_140933 crossref_primary_10_1039_D2SE01168A crossref_primary_10_1016_j_fuel_2023_129647 crossref_primary_10_1016_j_apsusc_2022_156305 crossref_primary_10_1016_j_mtnano_2022_100300 crossref_primary_10_1021_acsaem_3c00013 crossref_primary_10_1039_D3EE01697H crossref_primary_10_2139_ssrn_4077731 crossref_primary_10_1016_j_cej_2023_147288 crossref_primary_10_1021_acsenergylett_3c00654 crossref_primary_10_1016_j_ijhydene_2023_11_099 crossref_primary_10_1016_j_nanoen_2023_108683 crossref_primary_10_1021_acs_energyfuels_3c03578 crossref_primary_10_1002_anie_202312306 crossref_primary_10_1021_acs_jpclett_2c02581 crossref_primary_10_1016_j_enconman_2023_118007 crossref_primary_10_1055_a_2124_4037 crossref_primary_10_1016_j_mtphys_2024_101487 crossref_primary_10_18321_cpc21_2_71_80 crossref_primary_10_1016_j_cej_2022_139957 crossref_primary_10_1007_s11581_023_05302_6 crossref_primary_10_1016_j_cej_2022_140944 crossref_primary_10_1038_s41570_022_00448_9 crossref_primary_10_1002_aesr_202300141 crossref_primary_10_1002_adfm_202305318 crossref_primary_10_1016_j_xcrp_2022_101082 crossref_primary_10_1002_anie_202210849 crossref_primary_10_1016_j_jcis_2023_08_039 crossref_primary_10_1038_s41586_022_05399_1 crossref_primary_10_1039_D3TA01850D crossref_primary_10_1016_j_jmst_2023_08_030 crossref_primary_10_1016_j_apcatb_2024_124108 crossref_primary_10_1016_j_jcis_2022_05_108 crossref_primary_10_1016_j_cej_2022_137301 crossref_primary_10_1002_ange_202214273 crossref_primary_10_1021_acs_accounts_3c00011 crossref_primary_10_1021_acsami_4c00709 crossref_primary_10_1557_s43579_022_00292_4 crossref_primary_10_1007_s12274_024_6476_x crossref_primary_10_1021_jacs_4c03437 crossref_primary_10_1016_j_jmst_2023_08_023 crossref_primary_10_1002_appl_202300080 crossref_primary_10_1002_celc_202400239 crossref_primary_10_1016_j_fuel_2023_129895 crossref_primary_10_1016_j_enconman_2022_115927 crossref_primary_10_1016_j_renene_2022_07_075 crossref_primary_10_1039_D3EE04369J crossref_primary_10_1039_D2TC04578H crossref_primary_10_1039_D3QI01996A crossref_primary_10_1007_s11120_022_00945_4 crossref_primary_10_1016_j_ijhydene_2023_01_177 crossref_primary_10_1002_gch2_202200165 crossref_primary_10_1039_D2TA05932K crossref_primary_10_3390_ma17040853 crossref_primary_10_1038_s41467_024_47870_9 crossref_primary_10_1016_j_surfin_2023_103491 crossref_primary_10_1016_j_ijhydene_2024_02_261 crossref_primary_10_1039_D2CY01962K crossref_primary_10_1002_adma_202405060 crossref_primary_10_1016_j_mtcomm_2023_107605 crossref_primary_10_1002_ange_202112749 crossref_primary_10_1038_s41467_023_35981_8 crossref_primary_10_1002_anie_202209687 crossref_primary_10_1016_j_nanoen_2024_109608 crossref_primary_10_1002_ange_202218850 crossref_primary_10_1002_tcr_202300013 crossref_primary_10_1002_adom_202102641 crossref_primary_10_1021_acs_accounts_1c00676 crossref_primary_10_1039_D2GC00981A crossref_primary_10_1021_acscatal_2c04544 crossref_primary_10_1039_D2CP03595B crossref_primary_10_1016_j_electacta_2023_142081 crossref_primary_10_1039_D2YA00134A crossref_primary_10_1016_j_jece_2023_111216 crossref_primary_10_1016_j_ceramint_2024_04_286 crossref_primary_10_1021_acssuschemeng_3c06377 crossref_primary_10_1016_j_joule_2023_12_005 crossref_primary_10_1002_anie_202304773 crossref_primary_10_1002_cssc_202201616 crossref_primary_10_4139_sfj_74_649 crossref_primary_10_1021_acs_jpclett_2c00193 crossref_primary_10_1016_j_cclet_2024_109993 crossref_primary_10_1063_5_0097485 crossref_primary_10_1021_acsaem_2c03136 crossref_primary_10_1002_cctc_202301234 crossref_primary_10_1021_acscatal_4c00123 crossref_primary_10_1021_acsaem_3c02030 crossref_primary_10_1021_acscatal_3c03405 crossref_primary_10_1063_5_0126893 crossref_primary_10_1002_ange_202217989 crossref_primary_10_1021_acscatal_2c01012 crossref_primary_10_1016_j_jcis_2023_12_101 crossref_primary_10_1002_cphc_202300216 crossref_primary_10_1039_D2TA09918G crossref_primary_10_1039_D2TA06050G crossref_primary_10_1155_2022_4282485 crossref_primary_10_1002_adfm_202313596 crossref_primary_10_1039_D2CY00410K crossref_primary_10_1021_acscatal_3c04743 crossref_primary_10_1039_D3EY00246B crossref_primary_10_1021_acs_chemmater_3c02929 crossref_primary_10_1016_j_ijhydene_2024_05_039 crossref_primary_10_2139_ssrn_4173930 crossref_primary_10_1002_adma_202305535 crossref_primary_10_1021_acsami_3c08842 crossref_primary_10_1021_jacs_3c12666 crossref_primary_10_1021_acsnano_3c01448 crossref_primary_10_1016_j_mssp_2023_107463 crossref_primary_10_1021_acsanm_3c04026 crossref_primary_10_1021_acs_jpcc_3c00820 crossref_primary_10_1002_anie_202307909 crossref_primary_10_1039_D3NR05518C crossref_primary_10_1002_ange_202218016 crossref_primary_10_1016_j_joule_2023_01_002 crossref_primary_10_1016_j_diamond_2023_110456 crossref_primary_10_1039_D3EE01265D crossref_primary_10_1039_D2TA08783A crossref_primary_10_1002_advs_202201633 crossref_primary_10_1016_j_jcat_2023_115250 crossref_primary_10_1002_anie_202209016 crossref_primary_10_3390_hydrogen4030040 crossref_primary_10_1038_s41467_023_40010_9 crossref_primary_10_1016_j_nanoen_2024_109879 crossref_primary_10_1016_j_cej_2022_135759 crossref_primary_10_1002_cctc_202201271 crossref_primary_10_1016_j_apcatb_2021_120893 crossref_primary_10_1038_s41467_022_28415_4 crossref_primary_10_1002_adma_202305313 crossref_primary_10_1021_acscatal_2c05789 crossref_primary_10_1016_j_ijhydene_2023_03_160 crossref_primary_10_1039_D2NR05413B crossref_primary_10_1039_D2SE00145D crossref_primary_10_1016_j_apcatb_2023_122369 crossref_primary_10_1016_j_cej_2022_134673 crossref_primary_10_1016_j_cjsc_2024_100214 crossref_primary_10_1002_aenm_202200342 crossref_primary_10_1016_j_nantod_2023_101885 crossref_primary_10_1016_j_jclepro_2023_136672 crossref_primary_10_1016_j_nanoen_2024_109850 crossref_primary_10_1002_anie_202307930 crossref_primary_10_1016_j_cej_2023_141674 crossref_primary_10_1039_D3TA04353C crossref_primary_10_1002_cphc_202300939 crossref_primary_10_1002_aenm_202304362 crossref_primary_10_1002_aenm_202200352 crossref_primary_10_1016_j_joule_2023_02_016 crossref_primary_10_1039_D1CY01682B crossref_primary_10_1039_D3TC00009E crossref_primary_10_3390_nano12213808 crossref_primary_10_1021_acscatal_4c01020 crossref_primary_10_1038_s41586_022_05379_5 crossref_primary_10_1016_j_jallcom_2022_167114 crossref_primary_10_1021_acscatal_2c05365 crossref_primary_10_1016_j_ijhydene_2022_02_019 crossref_primary_10_1088_1361_648X_ad14c8 crossref_primary_10_1016_j_joule_2023_10_004 crossref_primary_10_1039_D3EY00047H crossref_primary_10_1002_cptc_202200176 crossref_primary_10_1016_j_cej_2023_148296 crossref_primary_10_1002_anie_202300224 crossref_primary_10_1016_j_ijhydene_2023_05_187 crossref_primary_10_1016_j_mattod_2022_11_004 crossref_primary_10_1016_j_cej_2023_141893 crossref_primary_10_1016_j_ccr_2024_215694 crossref_primary_10_1016_j_enconman_2022_115988 crossref_primary_10_1038_s41565_023_01388_1 crossref_primary_10_1016_j_molstruc_2024_139015 crossref_primary_10_1039_D3GC03258B crossref_primary_10_1073_pnas_2312550120 crossref_primary_10_1002_appl_202300012 crossref_primary_10_1016_j_jpcs_2024_112125 crossref_primary_10_1016_j_apcatb_2023_123200 crossref_primary_10_1021_acsnano_2c08643 crossref_primary_10_1021_acs_macromol_3c01496 crossref_primary_10_1002_ange_202312306 crossref_primary_10_1016_j_apsusc_2022_154398 crossref_primary_10_1039_D2DT01465C crossref_primary_10_1016_j_jallcom_2022_167333 crossref_primary_10_3390_catal13020355 crossref_primary_10_1021_acs_langmuir_4c00805 crossref_primary_10_1039_D3CY01492D crossref_primary_10_1093_nsr_nwad139 crossref_primary_10_1039_D2NA00741J crossref_primary_10_1002_aenm_202200389 crossref_primary_10_1002_anie_202316444 crossref_primary_10_1126_sciadv_adn6211 crossref_primary_10_1002_cssc_202300361 crossref_primary_10_1021_acs_jpcc_2c08931 crossref_primary_10_1002_ange_202210700 crossref_primary_10_1039_D2CP05427B crossref_primary_10_1007_s11426_022_1487_8 crossref_primary_10_1002_aoc_7633 crossref_primary_10_1080_01614940_2023_2250652 crossref_primary_10_1039_D3TA06600B crossref_primary_10_1155_2022_5628032 crossref_primary_10_1016_j_gee_2024_04_003 crossref_primary_10_1002_ange_202304773 crossref_primary_10_1021_acs_chemrev_2c00602 crossref_primary_10_1002_advs_202302503 crossref_primary_10_1016_j_apcatb_2022_122028 crossref_primary_10_1016_j_apcatb_2023_122781 crossref_primary_10_1016_j_cattod_2022_07_020 crossref_primary_10_1016_j_jallcom_2022_165786 crossref_primary_10_1021_acsnano_4c00619 crossref_primary_10_1016_j_energy_2024_130562 crossref_primary_10_1016_j_ijhydene_2024_06_228 crossref_primary_10_1038_s41467_024_47603_y crossref_primary_10_1039_D3SE01163A crossref_primary_10_1126_sciadv_adk2407 crossref_primary_10_1002_anie_202204880 crossref_primary_10_1016_j_apcatb_2024_123902 crossref_primary_10_3390_polym14112148 crossref_primary_10_1016_j_apcatb_2022_122258 crossref_primary_10_1039_D2SC06981D crossref_primary_10_1016_j_cej_2023_144793 crossref_primary_10_1016_j_renene_2023_04_078 crossref_primary_10_1016_j_apmate_2024_100178 crossref_primary_10_3390_catal11101185 crossref_primary_10_1002_anie_202404658 crossref_primary_10_1021_acsami_3c09073 crossref_primary_10_1021_acsaem_2c00982 crossref_primary_10_1002_advs_202301872 crossref_primary_10_1021_acsenergylett_4c00282 crossref_primary_10_1039_D2TA06895H crossref_primary_10_1016_j_mtchem_2023_101486 crossref_primary_10_2139_ssrn_4106723 crossref_primary_10_2174_1385272826666220330113959 crossref_primary_10_1016_j_ijhydene_2023_11_317 crossref_primary_10_1016_j_apcatb_2022_121144 crossref_primary_10_1016_j_jcis_2023_10_035 crossref_primary_10_1016_j_ijhydene_2024_06_254 crossref_primary_10_1002_anie_202212234 crossref_primary_10_1016_j_memsci_2022_121011 crossref_primary_10_1039_D3SE00290J crossref_primary_10_3390_coatings14030366 crossref_primary_10_1016_j_seppur_2023_125225 crossref_primary_10_1016_j_ijhydene_2022_12_288 crossref_primary_10_1021_jacs_3c11539 crossref_primary_10_1021_acs_jpclett_3c01956 crossref_primary_10_1039_D2CY01146H crossref_primary_10_1016_j_apcatb_2023_122741 crossref_primary_10_1039_D3TA04684B crossref_primary_10_1039_D3EE01192E crossref_primary_10_5796_denkikagaku_22_FE0012 crossref_primary_10_1016_j_ijhydene_2023_06_168 crossref_primary_10_1002_aic_18112 crossref_primary_10_1016_j_cej_2024_149267 crossref_primary_10_1016_j_ces_2023_119507 crossref_primary_10_1016_j_jcat_2024_115317 crossref_primary_10_1016_j_applthermaleng_2023_122134 crossref_primary_10_1002_smll_202304743 crossref_primary_10_1021_acscatal_3c00951 crossref_primary_10_1016_j_apcata_2022_118804 crossref_primary_10_1016_j_scib_2022_11_018 crossref_primary_10_1016_j_carbon_2023_118345 crossref_primary_10_1002_ange_202301239 crossref_primary_10_1016_j_jcis_2024_06_065 crossref_primary_10_1016_j_ces_2023_118886 crossref_primary_10_1002_lpor_202200700 crossref_primary_10_1016_j_ijhydene_2023_12_162 crossref_primary_10_1016_j_mtener_2022_101111 crossref_primary_10_34133_2022_9836095 crossref_primary_10_1021_acs_jpcc_1c08443 crossref_primary_10_1016_j_apcatb_2024_124197 crossref_primary_10_1002_cphc_202100851 crossref_primary_10_1002_anie_202217989 crossref_primary_10_1002_anie_202310733 crossref_primary_10_3390_catal13010154 crossref_primary_10_1021_acsenergylett_1c02591 crossref_primary_10_1021_jacs_3c00663 crossref_primary_10_1021_acscatal_2c00972 crossref_primary_10_1021_acsenergylett_1c02590 crossref_primary_10_1016_S1872_2067_23_64462_6 crossref_primary_10_1126_sciadv_ade0189 crossref_primary_10_1039_D3TA07756J crossref_primary_10_1016_j_solmat_2023_112385 crossref_primary_10_1016_j_apcatb_2023_122960 crossref_primary_10_1016_j_colsurfa_2022_130413 crossref_primary_10_1016_j_nanoen_2024_109495 crossref_primary_10_1016_j_jallcom_2022_167988 crossref_primary_10_1016_j_ijhydene_2023_11_118 crossref_primary_10_1039_D4MH00482E crossref_primary_10_1002_advs_202207314 crossref_primary_10_1016_j_cej_2021_134101 crossref_primary_10_1021_acs_chemrev_1c00686 crossref_primary_10_1021_acsaem_3c00882 crossref_primary_10_1021_jacs_2c00666 crossref_primary_10_1039_D3QM01179H crossref_primary_10_1021_acsaem_2c03280 crossref_primary_10_1039_D2TA06961J crossref_primary_10_1002_anie_202214273 crossref_primary_10_1038_s41467_023_38402_y crossref_primary_10_1039_D2TA10010J crossref_primary_10_1007_s41779_023_00986_5 crossref_primary_10_1016_j_matt_2023_05_006 crossref_primary_10_1016_j_apcatb_2021_121055 crossref_primary_10_1016_j_colsurfa_2024_134467 crossref_primary_10_1016_j_apsusc_2022_155973 crossref_primary_10_1039_D2GC00292B crossref_primary_10_1039_D4TA00434E crossref_primary_10_1021_jacs_3c06413 crossref_primary_10_1002_cssc_202400504 crossref_primary_10_1016_j_joule_2023_05_018 crossref_primary_10_1016_j_jallcom_2023_170462 crossref_primary_10_1016_j_jcis_2023_12_087 crossref_primary_10_1002_aenm_202300628 crossref_primary_10_1039_D3CP06333J crossref_primary_10_1016_j_apsusc_2022_155963 crossref_primary_10_3390_en15041415 crossref_primary_10_1002_anie_202218850 crossref_primary_10_1002_ange_202201482 crossref_primary_10_1016_j_ijhydene_2024_02_169 crossref_primary_10_1088_1361_6463_ac6f97 crossref_primary_10_1021_acsaem_3c02749 crossref_primary_10_1021_acsestengg_1c00456 crossref_primary_10_1016_j_cej_2022_139204 crossref_primary_10_1016_j_cjche_2023_11_005 crossref_primary_10_1002_anie_202307490 crossref_primary_10_1016_j_jece_2023_109663 crossref_primary_10_1021_acsmaterialslett_4c00456 crossref_primary_10_1016_j_cattod_2023_114146 crossref_primary_10_1002_sstr_202300123 crossref_primary_10_1039_D2NJ03688F crossref_primary_10_2139_ssrn_4163790 crossref_primary_10_1016_j_jechem_2022_09_013 crossref_primary_10_1002_cssc_202202255 crossref_primary_10_1016_j_apsusc_2023_159139 crossref_primary_10_1016_j_solener_2022_09_019 crossref_primary_10_1021_acsami_2c06302 crossref_primary_10_1002_admt_202301213 crossref_primary_10_3389_fchem_2022_904251 crossref_primary_10_1016_j_joule_2023_04_008 crossref_primary_10_1002_cssc_202400533 crossref_primary_10_1021_acscatal_3c04484 crossref_primary_10_1002_ange_202316444 crossref_primary_10_1016_j_enconman_2023_117400 crossref_primary_10_1002_chem_202300658 crossref_primary_10_1002_cssc_202301912 crossref_primary_10_1002_ange_202304694 crossref_primary_10_1002_anie_202210700 crossref_primary_10_1021_acscatal_2c03730 crossref_primary_10_1002_chem_202200938 crossref_primary_10_1016_j_seppur_2022_122079 crossref_primary_10_1002_adma_202302512 crossref_primary_10_1016_j_cjche_2022_02_001 crossref_primary_10_1039_D2CY01294D crossref_primary_10_1039_D3EE02814C crossref_primary_10_1007_s10562_022_04179_w crossref_primary_10_1016_S1872_2067_23_64422_5 crossref_primary_10_1002_smll_202202939 crossref_primary_10_1039_D3DT00050H crossref_primary_10_1007_s41061_022_00391_9 crossref_primary_10_3390_catal13040723 crossref_primary_10_1002_anie_202311549 crossref_primary_10_1016_j_chemosphere_2023_139281 crossref_primary_10_1021_acsenergylett_1c02516 crossref_primary_10_1126_sciadv_adc9115 crossref_primary_10_3390_ma15041489 crossref_primary_10_1002_anie_202401746 crossref_primary_10_1002_ange_202401746 crossref_primary_10_1016_j_jcis_2023_08_107 crossref_primary_10_3390_oxygen3040027 crossref_primary_10_1016_j_ultsonch_2022_106222 crossref_primary_10_1021_acscatal_3c02053 crossref_primary_10_2139_ssrn_4090170 crossref_primary_10_1039_D2TA06851F crossref_primary_10_1016_j_colsurfa_2023_131083 crossref_primary_10_1038_s41467_023_36574_1 crossref_primary_10_1039_D2NR04063H crossref_primary_10_1021_acsestengg_1c00429 crossref_primary_10_1039_D3TA04994A crossref_primary_10_1039_D2CC04786A crossref_primary_10_54227_elab_20220013 crossref_primary_10_1016_j_cej_2024_149627 crossref_primary_10_1002_adfm_202212811 crossref_primary_10_1016_j_apsusc_2022_154013 crossref_primary_10_1039_D3CP05579E crossref_primary_10_3390_catal12101137 crossref_primary_10_1039_D1CP04352H crossref_primary_10_1016_j_jallcom_2021_163514 crossref_primary_10_1021_acsenergylett_3c00539 crossref_primary_10_1016_j_colsurfa_2023_131077 crossref_primary_10_1038_s43586_023_00226_x crossref_primary_10_1002_adma_202306906 crossref_primary_10_1007_s10311_023_01608_z crossref_primary_10_1016_j_apsusc_2024_160018 crossref_primary_10_1063_PT_3_5360 crossref_primary_10_1016_j_fuproc_2024_108057 crossref_primary_10_1007_s42864_023_00202_8 crossref_primary_10_1016_j_apcatb_2022_121613 crossref_primary_10_1016_j_apcatb_2023_123074 crossref_primary_10_1007_s11708_023_0870_z crossref_primary_10_1002_aic_17985 crossref_primary_10_1016_j_cogsc_2021_100577 crossref_primary_10_1021_acsomega_3c08911 crossref_primary_10_1021_acs_jpcc_3c02831 crossref_primary_10_1002_adsu_202400118 crossref_primary_10_1039_D3QI00216K crossref_primary_10_1016_j_jcis_2023_08_122 crossref_primary_10_1038_s41467_023_43837_4 crossref_primary_10_1021_acsestengg_2c00030 crossref_primary_10_3390_ma16103745 crossref_primary_10_1002_adfm_202304351 crossref_primary_10_1039_D2TA02322A crossref_primary_10_1039_D3NH00235G crossref_primary_10_1007_s12274_022_5352_6 crossref_primary_10_1016_j_isci_2022_105221 crossref_primary_10_1002_adfm_202313058 crossref_primary_10_1039_D3CP04443B crossref_primary_10_6023_A22080362 crossref_primary_10_1007_s10854_023_10154_x crossref_primary_10_2139_ssrn_4105292 crossref_primary_10_1002_anie_202304694 crossref_primary_10_1016_j_ccr_2023_215246 crossref_primary_10_1039_D3SC03198E crossref_primary_10_1016_j_jtice_2023_104945 crossref_primary_10_1016_j_ijhydene_2022_07_265 crossref_primary_10_1016_j_cattod_2022_03_035 crossref_primary_10_1021_acsami_3c09635 crossref_primary_10_1016_j_scitotenv_2023_163914 crossref_primary_10_1063_5_0179225 crossref_primary_10_1039_D2GC03272D crossref_primary_10_1016_j_ijhydene_2021_12_255 crossref_primary_10_1088_1674_4926_44_3_030401 crossref_primary_10_1021_acs_jpclett_3c03503 crossref_primary_10_1002_anie_202116573 crossref_primary_10_1063_5_0088459 crossref_primary_10_2139_ssrn_4062368 crossref_primary_10_1039_D2NA00119E crossref_primary_10_1002_advs_202201134 crossref_primary_10_1515_ci_2023_0403 crossref_primary_10_1002_ange_202214143 crossref_primary_10_1021_acs_inorgchem_1c03798 crossref_primary_10_1002_adfm_202315212 crossref_primary_10_1016_j_apcatb_2023_123069 crossref_primary_10_1016_j_jcat_2022_07_033 crossref_primary_10_1016_j_nanoen_2023_108345 crossref_primary_10_1016_j_nxener_2023_100016 crossref_primary_10_3390_molecules28052203 crossref_primary_10_1063_5_0173976 crossref_primary_10_1002_ente_202201081 crossref_primary_10_1063_5_0133046 crossref_primary_10_1021_acsanm_3c04740 crossref_primary_10_1016_j_ijhydene_2022_09_245 crossref_primary_10_1021_jacs_3c12062 crossref_primary_10_1016_j_matchemphys_2022_126948 crossref_primary_10_1016_j_fuel_2023_130712 crossref_primary_10_1016_j_gee_2023_05_003 crossref_primary_10_1021_acsanm_2c02350 crossref_primary_10_1002_smtd_202300619 crossref_primary_10_1002_adfm_202208101 crossref_primary_10_1002_ange_202201299 crossref_primary_10_1021_acs_energyfuels_2c00178 crossref_primary_10_1039_D2TA06942C crossref_primary_10_3390_gels8110719 crossref_primary_10_1002_ange_202310733 crossref_primary_10_1016_j_apcatb_2023_123045 crossref_primary_10_1021_acs_jpcc_1c10081 crossref_primary_10_1039_D2CP04582F crossref_primary_10_1039_D3GC04350A crossref_primary_10_1039_D3TA07365C crossref_primary_10_1016_j_joule_2023_05_006 crossref_primary_10_1016_j_xcrp_2022_101122 crossref_primary_10_2139_ssrn_4122444 crossref_primary_10_1039_D3TA06383F crossref_primary_10_1016_j_esi_2023_12_001 crossref_primary_10_1016_j_jmst_2022_08_030 crossref_primary_10_6023_A21120607 crossref_primary_10_1002_smtd_202400376 crossref_primary_10_1016_j_nxener_2023_100006 crossref_primary_10_1016_j_cej_2023_147338 crossref_primary_10_1016_j_ijhydene_2022_07_210 crossref_primary_10_1002_asia_202201108 crossref_primary_10_1016_j_jallcom_2023_170635 crossref_primary_10_1016_j_desal_2022_115819 crossref_primary_10_1039_D3TC03622G crossref_primary_10_1063_5_0179259 crossref_primary_10_1021_acs_jpcc_3c00483 crossref_primary_10_1002_anie_202218016 crossref_primary_10_1002_ange_202312938 crossref_primary_10_1021_acs_energyfuels_2c01478 |
Cites_doi | 10.1016/j.joule.2017.12.009 10.1515/nleng-2017-0171 10.1021/jacs.6b12164 10.1039/C8SC05757E 10.3390/chemengineering2030036 10.1039/D0SE00921K 10.1021/jp061829o 10.1002/ese3.440 10.1038/nmat4589 10.1038/s41586-020-2278-9 10.1038/ncomms13237 10.1038/s41563-019-0399-z 10.1039/C8CS00699G 10.1627/jpi.59.276 10.1038/s41929-018-0134-1 10.1149/2.1381914jes 10.1038/s41929-019-0242-6 |
ContentType | Journal Article |
Copyright | The Author(s), under exclusive licence to Springer Nature Limited 2021 Copyright Nature Publishing Group Oct 14, 2021 |
Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature Limited 2021 – notice: Copyright Nature Publishing Group Oct 14, 2021 |
DBID | AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7RV 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7X2 7X7 7XB 88A 88E 88G 88I 8AF 8AO 8C1 8FD 8FE 8FG 8FH 8FI 8FJ 8FK 8G5 ABJCF ABUWG AFKRA ARAPS ATCPS AZQEC BBNVY BEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU D1I DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH H94 HCIFZ K9. KB. KB0 KL. L6V LK8 M0K M0S M1P M2M M2O M2P M7N M7P M7S MBDVC NAPCQ P5Z P62 P64 PATMY PCBAR PDBOC PQEST PQQKQ PQUKI PSYQQ PTHSS PYCSY Q9U R05 RC3 S0X SOI 7X8 |
DOI | 10.1038/s41586-021-03907-3 |
DatabaseName | CrossRef ProQuest Central (Corporate) Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts ProQuest Nursing and Allied Health Journals Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Agricultural Science Collection ProQuest_Health & Medical Collection ProQuest Central (purchase pre-March 2016) Biology Database (Alumni Edition) Medical Database (Alumni Edition) Psychology Database (Alumni) Science Database (Alumni Edition) STEM Database ProQuest Pharma Collection Public Health Database Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central Advanced Technologies & Aerospace Database (1962 - current) ProQuest Agriculture & Environmental Science Database ProQuest Central Essentials Biological Science Collection eLibrary ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Materials Science Collection ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student Research Library Prep AIDS and Cancer Research Abstracts SciTech Premium Collection (Proquest) (PQ_SDU_P3) ProQuest Health & Medical Complete (Alumni) Materials Science Database Nursing & Allied Health Database (Alumni Edition) Meteorological & Geoastrophysical Abstracts - Academic ProQuest Engineering Collection Biological Sciences Agricultural Science Database Health & Medical Collection (Alumni Edition) PML(ProQuest Medical Library) Psychology Database (ProQuest) ProQuest research library ProQuest Science Journals Algology Mycology and Protozoology Abstracts (Microbiology C) Biological Science Database Engineering Database Research Library (Corporate) Nursing & Allied Health Premium Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Environmental Science Database Earth, Atmospheric & Aquatic Science Database Materials Science Collection ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest One Psychology Engineering Collection Environmental Science Collection ProQuest Central Basic University of Michigan Genetics Abstracts SIRS Editorial Environment Abstracts MEDLINE - Academic |
DatabaseTitle | CrossRef Agricultural Science Database ProQuest One Psychology Research Library Prep ProQuest Central Student Oncogenes and Growth Factors Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials Nucleic Acids Abstracts elibrary ProQuest AP Science SciTech Premium Collection Environmental Sciences and Pollution Management Health Research Premium Collection Meteorological & Geoastrophysical Abstracts Natural Science Collection Biological Science Collection Chemoreception Abstracts ProQuest Medical Library (Alumni) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database Virology and AIDS Abstracts ProQuest Science Journals (Alumni Edition) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database Ecology Abstracts Neurosciences Abstracts ProQuest Hospital Collection (Alumni) Biotechnology and BioEngineering Abstracts Environmental Science Collection Entomology Abstracts Nursing & Allied Health Premium ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Environmental Science Database ProQuest Nursing & Allied Health Source (Alumni) Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts Meteorological & Geoastrophysical Abstracts - Academic University of Michigan Technology Collection Technology Research Database SIRS Editorial Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Biology Journals (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Genetics Abstracts ProQuest Engineering Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) Agricultural & Environmental Science Collection AIDS and Cancer Research Abstracts Materials Science Database ProQuest Research Library ProQuest Materials Science Collection ProQuest Public Health ProQuest Central Basic ProQuest Science Journals ProQuest Nursing & Allied Health Source ProQuest Psychology Journals (Alumni) ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest Medical Library ProQuest Psychology Journals Animal Behavior Abstracts Materials Science & Engineering Collection Immunology Abstracts Environment Abstracts ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | Agricultural Science Database |
Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 307 |
ExternalDocumentID | 10_1038_s41586_021_03907_3 |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 0WA 123 186 1OL 1VR 29M 2KS 2XV 39C 41X 53G 5RE 6TJ 70F 7RV 7X2 7X7 7XC 85S 88A 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 8WZ 97F 97L A6W A7Z AAEEF AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAVBQ AAYEP AAZLF ABFSI ABIVO ABJCF ABJNI ABLJU ABOCM ABPEJ ABPPZ ABUWG ABVXF ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFBBN AFFNX AFKRA AFLOW AFRAH AFRQD AFSHS AGAYW AGEZK AGHSJ AGHTU AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS AMTXH ARAPS ARMCB ASPBG ATCPS ATWCN AVWKF AXYYD AZFZN AZQEC B-7 BBNVY BCU BEC BENPR BGLVJ BHPHI BIN BKEYQ BKKNO BKSAR BPHCQ BVXVI CCPQU CJ0 CS3 D1I D1J D1K DU5 DWQXO E.- E.L EAP EBS EE. EMH EPS EX3 EXGXG F5P FEDTE FQGFK FSGXE FYUFA GNUQQ GUQSH HCIFZ HG6 HMCUK HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH INR IOF IPY ISR ITC K6- KB. KOO L6V L7B LK5 LK8 LSO M0K M1P M2M M2O M2P M7P M7R M7S N9A NAPCQ NEPJS O9- OBC OES OHH OMK OVD P2P P62 PATMY PCBAR PDBOC PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X R05 RND RNS RNT RNTTT RXW S0X SC5 SHXYY SIXXV SJFOW SJN SNYQT TAE TAOOD TBHMF TDRGL TEORI TN5 TSG TWZ U5U UIG UKHRP UKR UMD UQL VQA VVN WH7 WOW X7M XIH XKW XZL Y6R YAE YCJ YFH YNT YOC YQT YR2 YXB YZZ ZCA ~02 ~7V ~88 ~KM AAYXX CITATION 3V. 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 7XB 8FD 8FK AAYZH C1K FR3 H94 K9. KL. M7N MBDVC P64 PQEST PQUKI Q9U RC3 SOI 7X8 |
ID | FETCH-LOGICAL-c2633-77e5678b8ae0741ecc031fab0d4d73e82ceacef950ea186d26c7173bb6f80d353 |
IEDL.DBID | BENPR |
ISSN | 0028-0836 |
IngestDate | Fri Oct 25 09:54:31 EDT 2024 Sun Oct 27 04:41:05 EDT 2024 Thu Sep 12 17:11:50 EDT 2024 Fri Oct 11 20:35:54 EDT 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7880 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c2633-77e5678b8ae0741ecc031fab0d4d73e82ceacef950ea186d26c7173bb6f80d353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2065-3773 0000-0002-5009-2383 0000-0001-7995-4832 0000-0001-6624-0515 0000-0001-6101-0382 0000-0003-3548-5952 0000-0003-3888-7201 |
PQID | 2582441483 |
PQPubID | 40569 |
PageCount | 4 |
ParticipantIDs | proquest_miscellaneous_2564951969 proquest_journals_2582441483 crossref_primary_10_1038_s41586_021_03907_3 springer_journals_10_1038_s41586_021_03907_3 |
PublicationCentury | 2000 |
PublicationDate | 10-14-2021 |
PublicationDateYYYYMMDD | 2021-10-14 |
PublicationDate_xml | – month: 10 year: 2021 text: 10-14-2021 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationYear | 2021 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | Pagliaro (CR6) 2019; 7 Maeda (CR14) 2006; 110 Wang (CR10) 2018; 1 Kim, Hansora, Sharma, Jang, Lee (CR2) 2019; 48 Tanihara, Nakanishi, Yoshinaga (CR5) 2016; 59 Kemppainen (CR16) 2020; 4 Wang (CR17) 2017; 139 Yamada, Domen (CR13) 2018; 2 CR19 Goto (CR4) 2018; 2 Sayama, Miseki (CR18) 2014; 7 Takata (CR9) 2020; 581 Hisatomi, Domen (CR1) 2019; 2 Wang (CR8) 2016; 15 Lyu (CR12) 2019; 10 Jia (CR3) 2016; 7 Boretti, Castelletto, Al-Zubaidy (CR7) 2019; 8 Wang (CR11) 2019; 18 Peñas (CR15) 2019; 166 N Tanihara (3907_CR5) 2016; 59 Q Wang (3907_CR17) 2017; 139 H Lyu (3907_CR12) 2019; 10 M Pagliaro (3907_CR6) 2019; 7 J Jia (3907_CR3) 2016; 7 3907_CR19 K Maeda (3907_CR14) 2006; 110 Q Wang (3907_CR11) 2019; 18 Z Wang (3907_CR10) 2018; 1 A Boretti (3907_CR7) 2019; 8 T Hisatomi (3907_CR1) 2019; 2 P Peñas (3907_CR15) 2019; 166 Y Goto (3907_CR4) 2018; 2 T Takata (3907_CR9) 2020; 581 E Kemppainen (3907_CR16) 2020; 4 Q Wang (3907_CR8) 2016; 15 JH Kim (3907_CR2) 2019; 48 T Yamada (3907_CR13) 2018; 2 K Sayama (3907_CR18) 2014; 7 |
References_xml | – volume: 2 start-page: 509 year: 2018 end-page: 520 ident: CR4 article-title: A particulate photocatalyst water-splitting panel for large-scale solar hydrogen production publication-title: Joule doi: 10.1016/j.joule.2017.12.009 contributor: fullname: Goto – volume: 8 start-page: 10 year: 2019 end-page: 31 ident: CR7 article-title: Concentrating solar power tower technology: present status and outlook publication-title: Nonlinear Eng. doi: 10.1515/nleng-2017-0171 contributor: fullname: Al-Zubaidy – volume: 7 start-page: 79 year: 2014 end-page: 91 ident: CR18 article-title: Research and development of solar hydrogen production – toward the realization of ingenious photocatalysis-electrolysis hybrid system publication-title: Synthesiology (Eng. edn) contributor: fullname: Miseki – ident: CR19 – volume: 139 start-page: 1675 year: 2017 end-page: 1683 ident: CR17 article-title: Particulate photocatalyst sheets based on carbon conductor layer for efficient Z-scheme pure-water splitting at ambient pressure publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12164 contributor: fullname: Wang – volume: 10 start-page: 3196 year: 2019 end-page: 3201 ident: CR12 article-title: An Al-doped SrTiO photocatalyst maintaining sunlight-driven overall water splitting activity over 1000 h of constant illumination publication-title: Chem. Sci. doi: 10.1039/C8SC05757E contributor: fullname: Lyu – volume: 2 start-page: 36 year: 2018 ident: CR13 article-title: Development of sunlight driven water splitting devices towards future artificial photosynthetic industry publication-title: ChemEngineering doi: 10.3390/chemengineering2030036 contributor: fullname: Domen – volume: 4 start-page: 4831 year: 2020 end-page: 4847 ident: CR16 article-title: Effect of the ambient conditions on the operation of a large-area integrated photovoltaic-electrolyser publication-title: Sustain. Energy Fuel doi: 10.1039/D0SE00921K contributor: fullname: Kemppainen – volume: 110 start-page: 13753 year: 2006 end-page: 13758 ident: CR14 article-title: Characterization of Rh-Cr mixed-oxide nanoparticles dispersed on (Ga Zn )(N O ) as a cocatalyst for visible-light-driven overall water splitting publication-title: J. Phys. Chem. B doi: 10.1021/jp061829o contributor: fullname: Maeda – volume: 7 start-page: 1451 year: 2019 end-page: 1457 ident: CR6 article-title: Preparing for the future: solar energy and bioeconomy in the United Arab Emirates publication-title: Energy Sci. Eng. doi: 10.1002/ese3.440 contributor: fullname: Pagliaro – volume: 15 start-page: 611 year: 2016 end-page: 615 ident: CR8 article-title: Scalable water splitting on particulate photocatalyst sheets with a solar-to-hydrogen energy conversion efficiency exceeding 1% publication-title: Nat. Mater. doi: 10.1038/nmat4589 contributor: fullname: Wang – volume: 581 start-page: 411 year: 2020 end-page: 414 ident: CR9 article-title: Photocatalytic water splitting with quantum efficiency of almost unity publication-title: Nature doi: 10.1038/s41586-020-2278-9 contributor: fullname: Takata – volume: 7 year: 2016 ident: CR3 article-title: Solar water splitting by photovoltaic-electrolysis with a solar-to-hydrogen efficiency over 30% publication-title: Nat. Commun. doi: 10.1038/ncomms13237 contributor: fullname: Jia – volume: 18 start-page: 827 year: 2019 end-page: 832 ident: CR11 article-title: Oxysulfide photocatalyst for visible-light-driven overall water splitting publication-title: Nat. Mater. doi: 10.1038/s41563-019-0399-z contributor: fullname: Wang – volume: 48 start-page: 1908 year: 2019 end-page: 1971 ident: CR2 article-title: Toward practical solar hydrogen production – an artificial photosynthetic leaf-to-farm challenge publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00699G contributor: fullname: Lee – volume: 59 start-page: 276 year: 2016 end-page: 282 ident: CR5 article-title: Gas and vapor separation through polyimide membranes publication-title: J. Jpn. Petrol. Inst. doi: 10.1627/jpi.59.276 contributor: fullname: Yoshinaga – volume: 1 start-page: 756 year: 2018 end-page: 763 ident: CR10 article-title: Overall water splitting by Ta N nanorod single crystals grown on the edges of KTaO particles publication-title: Nat. Catal. doi: 10.1038/s41929-018-0134-1 contributor: fullname: Wang – volume: 166 start-page: H769 year: 2019 end-page: H776 ident: CR15 article-title: Decoupling gas evolution from water-splitting electrodes publication-title: J. Electrochem. Soc. doi: 10.1149/2.1381914jes contributor: fullname: Peñas – volume: 2 start-page: 387 year: 2019 end-page: 399 ident: CR1 article-title: Reaction systems for solar hydrogen production via water splitting with particulate semiconductor publication-title: Nat. Catal. doi: 10.1038/s41929-019-0242-6 contributor: fullname: Domen – volume: 8 start-page: 10 year: 2019 ident: 3907_CR7 publication-title: Nonlinear Eng. doi: 10.1515/nleng-2017-0171 contributor: fullname: A Boretti – volume: 166 start-page: H769 year: 2019 ident: 3907_CR15 publication-title: J. Electrochem. Soc. doi: 10.1149/2.1381914jes contributor: fullname: P Peñas – volume: 48 start-page: 1908 year: 2019 ident: 3907_CR2 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00699G contributor: fullname: JH Kim – volume: 4 start-page: 4831 year: 2020 ident: 3907_CR16 publication-title: Sustain. Energy Fuel doi: 10.1039/D0SE00921K contributor: fullname: E Kemppainen – volume: 1 start-page: 756 year: 2018 ident: 3907_CR10 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0134-1 contributor: fullname: Z Wang – volume: 7 start-page: 1451 year: 2019 ident: 3907_CR6 publication-title: Energy Sci. Eng. doi: 10.1002/ese3.440 contributor: fullname: M Pagliaro – volume: 2 start-page: 36 year: 2018 ident: 3907_CR13 publication-title: ChemEngineering doi: 10.3390/chemengineering2030036 contributor: fullname: T Yamada – volume: 2 start-page: 509 year: 2018 ident: 3907_CR4 publication-title: Joule doi: 10.1016/j.joule.2017.12.009 contributor: fullname: Y Goto – volume: 59 start-page: 276 year: 2016 ident: 3907_CR5 publication-title: J. Jpn. Petrol. Inst. doi: 10.1627/jpi.59.276 contributor: fullname: N Tanihara – volume: 7 year: 2016 ident: 3907_CR3 publication-title: Nat. Commun. doi: 10.1038/ncomms13237 contributor: fullname: J Jia – volume: 2 start-page: 387 year: 2019 ident: 3907_CR1 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0242-6 contributor: fullname: T Hisatomi – volume: 10 start-page: 3196 year: 2019 ident: 3907_CR12 publication-title: Chem. Sci. doi: 10.1039/C8SC05757E contributor: fullname: H Lyu – volume: 7 start-page: 79 year: 2014 ident: 3907_CR18 publication-title: Synthesiology (Eng. edn) contributor: fullname: K Sayama – ident: 3907_CR19 – volume: 15 start-page: 611 year: 2016 ident: 3907_CR8 publication-title: Nat. Mater. doi: 10.1038/nmat4589 contributor: fullname: Q Wang – volume: 581 start-page: 411 year: 2020 ident: 3907_CR9 publication-title: Nature doi: 10.1038/s41586-020-2278-9 contributor: fullname: T Takata – volume: 18 start-page: 827 year: 2019 ident: 3907_CR11 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0399-z contributor: fullname: Q Wang – volume: 110 start-page: 13753 year: 2006 ident: 3907_CR14 publication-title: J. Phys. Chem. B doi: 10.1021/jp061829o contributor: fullname: K Maeda – volume: 139 start-page: 1675 year: 2017 ident: 3907_CR17 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b12164 contributor: fullname: Q Wang |
SSID | ssj0005174 |
Score | 2.4161675 |
Snippet | The unprecedented impact of human activity on Earth’s climate and the ongoing increase in global energy demand have made the development of carbon-neutral... The unprecedented impact of human activity on Earth's climate and the ongoing increase in global energy demand have made the development of carbon-neutral... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Publisher |
StartPage | 304 |
SubjectTerms | 639/301/299/890 639/4077/4072/4062 639/4077/909/4101/4102 Alternative energy Aluminum Bubbles Carbon neutrality Carbon sources Climate and human activity Efficiency Electrolysis Electrolytic cells Energy conversion Energy conversion efficiency Energy demand Energy sources Gas separation Gases Glass Human influences Humanities and Social Sciences Hydrogen Hydrogen production Hydrogen-based energy multidisciplinary Nanoparticles Nuclear safety Optimization Oxygen Photocatalysis Photovoltaic cells Product safety Radiation Reactors Science Science (multidisciplinary) Solar cells Solar energy Strontium Strontium titanates Sunlight Systems design Water splitting |
Title | Photocatalytic solar hydrogen production from water on a 100-m2 scale |
URI | https://link.springer.com/article/10.1038/s41586-021-03907-3 https://www.proquest.com/docview/2582441483 https://search.proquest.com/docview/2564951969 |
Volume | 598 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB60IngR6wPriwgeFF3MJtltehItrSIoIgq9LUk2ixe7tVsR_70z29SioJfAsi-YL8l888gMwJETJokNdQ3gykXK-CSytmMiJ4RVzjnlYjrvfHef3jyr20EyCA63KqRVzvbEeqPOS0c-8nORaNRESN7lxegtoq5RFF0NLTQWYUmgpSAasHTVu394nCd5_KrDHI7NcKnPK1RdmhJwKaWoQ966n6ppzjd_hUhrzdNfg9VAGdnlFOMmLPjhOizXqZuuWodmWJ4VOw41pE82oPfwUk7K2jfzia-xiixY9vKZj0ucMWw0rfOKmDA6X8I-kHGOGV4ZFnMevQpWIXZ-E577vafuTRQ6JqBsUymRKvsEtY_VxhNVQHhwzRbG8lzlbem1cLjP-qKTcG9ineYidRSFtzYtNM9lIregMSyHfhuYyou48MoYgxaTk4U1OQLpEx57yVGztuB0JqxsNC2MkdUBbamzqWgzFG1WizaTLdibyTMLi6TK5pC24PD7Nk5vilmYoS_f6ZkUTTiq4dOCsxkO80_8_ced__-4CyuCoKfcFLUHjcn43e8jvZjYA1hsD9o46m5MY__6IMyqL6l_zkg |
link.rule.ids | 315,783,787,12070,12237,12779,21402,27938,27939,31733,31734,33280,33281,33387,33388,33758,33759,43324,43593,43614,43819,74081,74350,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58IHoR6wOrVSN4UHQxu8mu25OItNYnHip4C0k2ixe7tVuR_ntntqnFgh6XfcHMJN-XeQIc2UjHoaapAVzaQGoXB8Y0dWCjyEhrrbQh1Ts_PiWdF3n3Gr96h1vp0yone2K1UWeFJR_5eRSniERI3sVl_yOgqVEUXfUjNOZhUQoEGqoUb99MUzxmujD7ohku0vMSgSul9FtKKGqSr-43ME3Z5kyAtMKd9hqsesLIrsYarsGc663DUpW4act1qPnFWbJj30H6ZANaz2_FsKg8MyN8jZV0fmVvo2xQoL2w_rjLK2qEUXUJ-0K-OWB4pVnIefAesRI15zbhpd3qXncCPy8BJZsIgUTZxYg9JtWOiAIqB1dsrg3PZHYhXBpZ3GVd3oy502GaZFFiKQZvTJKnPBOx2IKFXtFz28Bkloe5k1prPC9ZkRudoRpdzEMnOOJqHU4nwlL9cVsMVYWzRarGolUoWlWJVok6NCbyVH6JlGqq0Doc_txG46aIhe654pOeSfAARx186nA20cP0E3__cef_Px7Acqf7-KAebp_ud2ElIjOgLBXZgIXh4NPtIdEYmv3Kmr4BgYfNOQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LSwMxEB58oHgRn1ifETwoujS7yW63JxFtqU96UOgtJNksXuzWbkX8985sU4sFPS77gvkm-SaZLzMAJzbScaipawCXNpDaxYExTR3YKDLSWittSOedH5-Szou868U9r38qvaxyMidWE3VWWNojr0dxikyEwbuo514W0b1pXw7eA-ogRZlW305jHhYbEokOfbvRa0zlHjMVmf0BGi7SeokklpIUl8RFTdq3-01S08hzJllacVB7DVZ98Miuxmivw5zrb8BSJeK05Qas-4FaslNfTfpsE1rd12JUVLs0X_gaK2kty16_smGBvsMG44qviA6jkybsE2PPIcMrzULOg7eIlYii24KXduv5uhP43glo5UQIDJpdjDxkUu0oaECgcPTm2vBMZg3h0sjijOvyZsydDtMkixJL-XhjkjzlmYjFNiz0i77bASazPMyd1Frj2smK3OgMIXUxD53gyLE1OJ8YSw3GJTJUldoWqRqbVqFpVWVaJWqwP7Gn8sOlVFNwa3D8cxsdnbIXuu-KD3omwcUcVfOpwcUEh-kn_v7j7v9_PIJldCT1cPt0vwcrEXkBCVbkPiyMhh_uAGOOkTmsnOkbNN7Rbg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Photocatalytic+solar+hydrogen+production+from+water+on+a+100-m2+scale&rft.jtitle=Nature+%28London%29&rft.au=Nishiyama%2C+Hiroshi&rft.au=Yamada%2C+Taro&rft.au=Nakabayashi%2C+Mamiko&rft.au=Maehara%2C+Yoshiki&rft.date=2021-10-14&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=598&rft.issue=7880&rft.spage=304&rft.epage=307&rft_id=info:doi/10.1038%2Fs41586-021-03907-3&rft.externalDocID=10_1038_s41586_021_03907_3 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |