Comparison of mini-models based on various clustering algorithms
The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input s...
Saved in:
Published in | Procedia computer science Vol. 176; pp. 3563 - 3570 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The article deals with the subject of mini-models (MMs) based on clustering algorithms. The mini-model method is a local regression algorithm that operates on some part of the input space called the mini-model domain (MM domain). MM domain can be created as a multidimensional polytope in the input space. Another possible solution is to divide the input space with clustering algorithms. As a result of this process, each data cluster is treated as a separate mini-model domain. The main aim of the article is to create an exhaustive comparison of mini-model methods based on the most well-known clustering algorithms. The work introduces new versions of the mini-model method based on clustering algorithms such as DBSCAN, OPTICS, Mean Shift, spectral clustering and several hierarchical methods. The paper also compares the results with other versions of the MM-method and instance-based learning algorithms. |
---|---|
ISSN: | 1877-0509 1877-0509 |
DOI: | 10.1016/j.procs.2020.09.030 |