A novel hybrid model for long-term water quality prediction with the ‘decomposition–inputs–prediction’ hierarchical optimization framework

Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via...

Full description

Saved in:
Bibliographic Details
Published inJournal of hydroinformatics Vol. 26; no. 11; pp. 3008 - 3026
Main Authors Han, Jianjun, Wang, Lingling, Yao, Qiwen, Zhu, Dawei, Zhu, Hai, Xu, Jin, Hu, Lihan, Yang, Xu
Format Journal Article
LanguageEnglish
Published London IWA Publishing 01.11.2024
Subjects
Online AccessGet full text
ISSN1464-7141
1465-1734
DOI10.2166/hydro.2024.244

Cover

Loading…
Abstract Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via wavelet decomposition, Spearman correlation analysis, and long short-term memory network, respectively. The observed data from 14 stations in the Huaihe River–Hongze Lake system, including ammonia nitrogen (AN) and chemical oxygen demand (COD), were used to make long-term water quality predictions. The results suggested that, compared to existing water quality prediction models, the HWQP model has higher accuracy, with the root mean square errors of 6 and 17% for simulating AN and COD, respectively. The AN and COD concentrations will range from 0 to 1 mg/l and from 3 to 5 mg/l at 12 stations, respectively, and the COD concentrations will exceed the water quality target at Stations 4 and 5. The established model has great potential to address the challenges associated with the water environment.
AbstractList Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via wavelet decomposition, Spearman correlation analysis, and long short-term memory network, respectively. The observed data from 14 stations in the Huaihe River–Hongze Lake system, including ammonia nitrogen (AN) and chemical oxygen demand (COD), were used to make long-term water quality predictions. The results suggested that, compared to existing water quality prediction models, the HWQP model has higher accuracy, with the root mean square errors of 6 and 17% for simulating AN and COD, respectively. The AN and COD concentrations will range from 0 to 1 mg/l and from 3 to 5 mg/l at 12 stations, respectively, and the COD concentrations will exceed the water quality target at Stations 4 and 5. The established model has great potential to address the challenges associated with the water environment.
Author Yao, Qiwen
Zhu, Hai
Hu, Lihan
Zhu, Dawei
Han, Jianjun
Wang, Lingling
Yang, Xu
Xu, Jin
Author_xml – sequence: 1
  givenname: Jianjun
  orcidid: 0009-0008-9100-984X
  surname: Han
  fullname: Han, Jianjun
– sequence: 2
  givenname: Lingling
  surname: Wang
  fullname: Wang, Lingling
– sequence: 3
  givenname: Qiwen
  surname: Yao
  fullname: Yao, Qiwen
– sequence: 4
  givenname: Dawei
  surname: Zhu
  fullname: Zhu, Dawei
– sequence: 5
  givenname: Hai
  surname: Zhu
  fullname: Zhu, Hai
– sequence: 6
  givenname: Jin
  surname: Xu
  fullname: Xu, Jin
– sequence: 7
  givenname: Lihan
  surname: Hu
  fullname: Hu, Lihan
– sequence: 8
  givenname: Xu
  surname: Yang
  fullname: Yang, Xu
BookMark eNpFkL1OwzAUhS1UJEphZbbEnGA7zt9YVfxJlVhgthznhrgkceo4VGHqM8ACr9cnIW2RmM65ukfnSN85mjSmAYSuKPEZjaKbcsit8Rlh3Gecn6Ap5VHo0Tjgk4PnXkw5PUPnXbcihNEgoVP0OceNeYcKl0NmdY5rk49HYSyuTPPqObA13shR8LqXlXYDbi3kWjltGrzRrsSuBLzbfuegTN2aTu8_u-2XbtredaP5z--2P7jUYKVVpVaywqZ1utYf8lBWWFnDxti3C3RayKqDyz-doZe72-fFg7d8un9czJeeYhFzHqg0T2VCSRImcVywiCpKICYyTDgjQZ4SkBDEWRJEMU8pRBBneRpyFqYsS1UazND1sbe1Zt1D58TK9LYZJ0VA-bgxIorGlH9MKWu6zkIhWqtraQdBidhzFwfuYs9djNyDX4wUgCI
Cites_doi 10.1016/j.watres.2024.121856
10.3390/w14040610
10.1016/j.watres.2022.119171
10.32604/cmc.2023.030703
10.3390/w15122157
10.1016/j.scitotenv.2016.06.235
10.1134/S0097807822040212
10.1016/j.envpol.2022.119136
10.1016/j.engappai.2024.108573
10.1029/2023JD039538
10.1016/j.scitotenv.2024.170978
10.1002/wrcr.20268
10.1006/enfo.2001.0061
10.1016/j.jhydrol.2022.127659
10.2166/hydro.2024.273
10.1016/j.scitotenv.2022.159714
10.5194/hess-22-6005-2018
10.1007/s11269-014-0824-7
10.1016/j.jhydrol.2022.128901
10.2166/hydro.2020.055
10.1016/j.matpr.2020.08.588
10.1002/cpe.3745
10.1016/j.energy.2016.06.075
10.3390/w14091322
10.1016/j.jhydrol.2022.128285
10.5194/hess-15-2693-2011
10.3390/hydrology11090155
10.1016/j.scitotenv.2020.144459
10.1016/j.ecolind.2019.01.068
10.1007/s13762-013-0378-x
10.1016/j.watres.2017.07.019
10.3390/app10207079
10.1016/j.jhydrol.2021.127334
10.1016/j.jhydrol.2014.11.050
10.2166/hydro.2024.128
10.1016/j.jhydrol.2019.124488
10.1016/j.jhydrol.2014.10.010
10.2166/wst.2020.596
10.1016/j.jenvman.2017.11.049
10.3389/fbuil.2024.1343398
10.1016/j.jhydrol.2021.126879
10.1109/TPWRS.2005.846054
10.1016/j.scitotenv.2016.07.102
10.1007/s11356-024-32061-2
ContentType Journal Article
Copyright Copyright IWA Publishing 2024
Copyright_xml – notice: Copyright IWA Publishing 2024
DBID AAYXX
CITATION
7QH
7UA
C1K
F1W
H96
L.G
DOI 10.2166/hydro.2024.244
DatabaseName CrossRef
Aqualine
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aqualine
ASFA: Aquatic Sciences and Fisheries Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 1465-1734
EndPage 3026
ExternalDocumentID 10_2166_hydro_2024_244
GroupedDBID 0R~
4.4
5GY
AAJMC
AAJVE
AAYXX
ABFYC
ABLGR
ACGFO
AECGI
AENEX
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CITATION
CS3
DU5
EBS
GEUZO
GROUPED_DOAJ
HCIFZ
HFPTO
HZ~
L7B
O9-
OK1
P2P
R0Z
RHI
~02
7QH
7UA
C1K
F1W
H13
H96
L.G
ID FETCH-LOGICAL-c262t-ec9d9a81085877f261c10e70a584203d90eae37b8367491e6e7bd9542592b9c93
ISSN 1464-7141
IngestDate Fri Jul 25 23:08:30 EDT 2025
Tue Jul 01 04:10:37 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c262t-ec9d9a81085877f261c10e70a584203d90eae37b8367491e6e7bd9542592b9c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0008-9100-984X
OpenAccessLink https://iwaponline.com/jh/article-pdf/26/11/3008/1515017/jh2024244.pdf
PQID 3142622136
PQPubID 2044529
PageCount 19
ParticipantIDs proquest_journals_3142622136
crossref_primary_10_2166_hydro_2024_244
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-11-01
20241101
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of hydroinformatics
PublicationYear 2024
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References Gers (key-10.2166/hydro.2024.244-16) 1999
key-10.2166/hydro.2024.244-29
key-10.2166/hydro.2024.244-28
key-10.2166/hydro.2024.244-27
key-10.2166/hydro.2024.244-26
key-10.2166/hydro.2024.244-48
key-10.2166/hydro.2024.244-1
key-10.2166/hydro.2024.244-14
key-10.2166/hydro.2024.244-36
key-10.2166/hydro.2024.244-13
key-10.2166/hydro.2024.244-35
key-10.2166/hydro.2024.244-3
key-10.2166/hydro.2024.244-12
key-10.2166/hydro.2024.244-34
key-10.2166/hydro.2024.244-2
key-10.2166/hydro.2024.244-11
key-10.2166/hydro.2024.244-33
key-10.2166/hydro.2024.244-10
key-10.2166/hydro.2024.244-32
Komornikova (key-10.2166/hydro.2024.244-22) 2008; 56
key-10.2166/hydro.2024.244-31
key-10.2166/hydro.2024.244-30
key-10.2166/hydro.2024.244-9
Karthikeyan (key-10.2166/hydro.2024.244-21) 2017; 46
key-10.2166/hydro.2024.244-8
key-10.2166/hydro.2024.244-5
key-10.2166/hydro.2024.244-4
key-10.2166/hydro.2024.244-7
key-10.2166/hydro.2024.244-6
key-10.2166/hydro.2024.244-19
Zhai (key-10.2166/hydro.2024.244-45) 2007; 8
key-10.2166/hydro.2024.244-18
key-10.2166/hydro.2024.244-17
key-10.2166/hydro.2024.244-39
key-10.2166/hydro.2024.244-38
key-10.2166/hydro.2024.244-15
key-10.2166/hydro.2024.244-37
key-10.2166/hydro.2024.244-25
key-10.2166/hydro.2024.244-47
key-10.2166/hydro.2024.244-24
key-10.2166/hydro.2024.244-46
key-10.2166/hydro.2024.244-23
key-10.2166/hydro.2024.244-44
key-10.2166/hydro.2024.244-43
key-10.2166/hydro.2024.244-20
key-10.2166/hydro.2024.244-42
key-10.2166/hydro.2024.244-41
key-10.2166/hydro.2024.244-40
References_xml – ident: key-10.2166/hydro.2024.244-35
  doi: 10.1016/j.watres.2024.121856
– ident: key-10.2166/hydro.2024.244-38
  doi: 10.3390/w14040610
– ident: key-10.2166/hydro.2024.244-30
  doi: 10.1016/j.watres.2022.119171
– ident: key-10.2166/hydro.2024.244-39
  doi: 10.32604/cmc.2023.030703
– ident: key-10.2166/hydro.2024.244-18
  doi: 10.3390/w15122157
– ident: key-10.2166/hydro.2024.244-4
  doi: 10.1016/j.scitotenv.2016.06.235
– ident: key-10.2166/hydro.2024.244-44
  doi: 10.1134/S0097807822040212
– start-page: 850
  year: 1999
  ident: key-10.2166/hydro.2024.244-16
  article-title: Learning to forget: Continual prediction with LSTM
– ident: key-10.2166/hydro.2024.244-43
  doi: 10.1016/j.envpol.2022.119136
– ident: key-10.2166/hydro.2024.244-2
  doi: 10.1016/j.engappai.2024.108573
– ident: key-10.2166/hydro.2024.244-27
  doi: 10.1029/2023JD039538
– ident: key-10.2166/hydro.2024.244-36
  doi: 10.1016/j.scitotenv.2024.170978
– ident: key-10.2166/hydro.2024.244-14
  doi: 10.1002/wrcr.20268
– ident: key-10.2166/hydro.2024.244-15
  doi: 10.1006/enfo.2001.0061
– ident: key-10.2166/hydro.2024.244-24
  doi: 10.1016/j.jhydrol.2022.127659
– ident: key-10.2166/hydro.2024.244-9
  doi: 10.2166/hydro.2024.273
– ident: key-10.2166/hydro.2024.244-10
  doi: 10.1016/j.scitotenv.2022.159714
– volume: 56
  start-page: 145
  year: 2008
  ident: key-10.2166/hydro.2024.244-22
  article-title: A hybrid modelling framework for forecasting monthly reservoir inflows
  publication-title: Journal of Hydrology and Hydromechanics
– ident: key-10.2166/hydro.2024.244-23
  doi: 10.5194/hess-22-6005-2018
– volume: 8
  start-page: 49
  year: 2007
  ident: key-10.2166/hydro.2024.244-45
  article-title: GIS-based fuzzy comprehensive water quality assessment model
  publication-title: Journal of Chongqing University(Natural Science Edition)
– ident: key-10.2166/hydro.2024.244-29
  doi: 10.1007/s11269-014-0824-7
– ident: key-10.2166/hydro.2024.244-5
  doi: 10.1016/j.jhydrol.2022.128901
– ident: key-10.2166/hydro.2024.244-25
  doi: 10.2166/hydro.2020.055
– ident: key-10.2166/hydro.2024.244-32
  doi: 10.1016/j.matpr.2020.08.588
– ident: key-10.2166/hydro.2024.244-40
  doi: 10.1002/cpe.3745
– ident: key-10.2166/hydro.2024.244-37
  doi: 10.1016/j.energy.2016.06.075
– ident: key-10.2166/hydro.2024.244-47
  doi: 10.3390/w14091322
– ident: key-10.2166/hydro.2024.244-41
  doi: 10.1016/j.jhydrol.2022.128285
– ident: key-10.2166/hydro.2024.244-28
  doi: 10.5194/hess-15-2693-2011
– ident: key-10.2166/hydro.2024.244-1
  doi: 10.3390/hydrology11090155
– ident: key-10.2166/hydro.2024.244-20
  doi: 10.1016/j.scitotenv.2020.144459
– ident: key-10.2166/hydro.2024.244-8
  doi: 10.1016/j.ecolind.2019.01.068
– ident: key-10.2166/hydro.2024.244-11
  doi: 10.1007/s13762-013-0378-x
– ident: key-10.2166/hydro.2024.244-48
  doi: 10.1016/j.watres.2017.07.019
– ident: key-10.2166/hydro.2024.244-12
  doi: 10.3390/app10207079
– ident: key-10.2166/hydro.2024.244-19
  doi: 10.1016/j.jhydrol.2021.127334
– ident: key-10.2166/hydro.2024.244-31
  doi: 10.1016/j.jhydrol.2014.11.050
– ident: key-10.2166/hydro.2024.244-13
  doi: 10.2166/hydro.2024.128
– ident: key-10.2166/hydro.2024.244-42
  doi: 10.1016/j.jhydrol.2019.124488
– ident: key-10.2166/hydro.2024.244-34
  doi: 10.1016/j.jhydrol.2014.10.010
– ident: key-10.2166/hydro.2024.244-46
  doi: 10.2166/wst.2020.596
– ident: key-10.2166/hydro.2024.244-3
  doi: 10.1016/j.jenvman.2017.11.049
– ident: key-10.2166/hydro.2024.244-17
  doi: 10.3389/fbuil.2024.1343398
– ident: key-10.2166/hydro.2024.244-33
  doi: 10.1016/j.jhydrol.2021.126879
– ident: key-10.2166/hydro.2024.244-7
  doi: 10.1109/TPWRS.2005.846054
– ident: key-10.2166/hydro.2024.244-26
  doi: 10.1016/j.scitotenv.2016.07.102
– ident: key-10.2166/hydro.2024.244-6
  doi: 10.1007/s11356-024-32061-2
– volume: 46
  start-page: 785
  year: 2017
  ident: key-10.2166/hydro.2024.244-21
  article-title: Multivariate analysis for river water quality assessment of the Cauvery river, Tamil Nadu, India
  publication-title: Indian Journal of Geo-Marine Sciences
SSID ssj0021381
Score 2.3403437
Snippet Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study,...
SourceID proquest
crossref
SourceType Aggregation Database
Index Database
StartPage 3008
SubjectTerms Accuracy
Ammonia
Artificial intelligence
Chemical oxygen demand
Correlation analysis
Datasets
Decomposition
Deep learning
Environmental management
Long short-term memory
Mathematical models
Neural networks
Optimization
Oxygen requirement
Pollutants
Prediction models
Regression analysis
Simulation
Statistical analysis
Stream flow
Time series
Trends
Water pollution
Water quality
Wavelet analysis
Wavelet transforms
Title A novel hybrid model for long-term water quality prediction with the ‘decomposition–inputs–prediction’ hierarchical optimization framework
URI https://www.proquest.com/docview/3142622136
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtNAGB6FcoALYhWlBc0BiYPlYI-X8RwjBESVQEJqRcXF8tjjJlWwq9YmSk95BrjAc_EGeRL-2WynKlLhYtkjz3j5P_-b_wWhlyUpQShnHD6kPHJDX3CXZ1Hp0pwUYUBLnmXyj-6Hj_H0KDw4jo5Ho9-DqKW24eP88tq8kv-hKowBXWWW7D9QtlsUBmAf6AtboDBsb0TjiVPV38TCma1k3pXuaqPiBhd1deJKpussM1kFUadOrmRFgGKum4NrByyAxIY7JIWQ8eUmiMuOBvPqrG0uusN-BTvEHNlOW_2QkPSugQd9NcmdTmlDv_6iA89WxXltarc2g7j7qXbLHgB2T9sOvp-Nbxvs55OFFbmSY2XK3_tpvuzz2r7MWh2yvxTzoWeDhCbFr2fGYSxjRXVhrLGwY5HrU-MANRxc59xbpPoDfhx4XjKQ7YGnT70qN4gfSxeGeuixvJUx0VUptwt0XxGcXTgjGFJyhVTNT-X8FObfQrcJ2C7E2vnGC-AHqnNu93C6kqic_3r7-tua0raioLSfw_voniEZnmgMPkAjUT1Ed94LU_D8Efo-wQqLWGMRKyxiICzusIgVFrHBIu6RhCUWMWARb9Y_t1C4Wf_Q-IOd_vzN-hceYg4PMYc7zD1GR-_eHr6Zuqbfh5uTmDSuyFnBskTmwySUlmDb574nqJeBkky8oGCeyERAeRLENGS-iAXlBYtA6jDCWc6CJ2inqivxFGFPalleVLKiiEFKiUQwMCX9MBNxGXHKd9Er-27TM13WJb2eirto37761Hz6F2ngy0YOQMr42Y0X2kN3e5Dvo53mvBXPQaFt-AsFkD-QW6nv
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+for+long-term+water+quality+prediction+with+the+%E2%80%98decomposition%E2%80%93inputs%E2%80%93prediction%E2%80%99+hierarchical+optimization+framework&rft.jtitle=Journal+of+hydroinformatics&rft.au=Han%2C+Jianjun&rft.au=Wang%2C+Lingling&rft.au=Yao%2C+Qiwen&rft.au=Zhu%2C+Dawei&rft.date=2024-11-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=26&rft.issue=11&rft.spage=3008&rft.epage=3026&rft_id=info:doi/10.2166%2Fhydro.2024.244&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2024_244
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon