A novel hybrid model for long-term water quality prediction with the ‘decomposition–inputs–prediction’ hierarchical optimization framework
Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via...
Saved in:
Published in | Journal of hydroinformatics Vol. 26; no. 11; pp. 3008 - 3026 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.11.2024
|
Subjects | |
Online Access | Get full text |
ISSN | 1464-7141 1465-1734 |
DOI | 10.2166/hydro.2024.244 |
Cover
Loading…
Abstract | Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via wavelet decomposition, Spearman correlation analysis, and long short-term memory network, respectively. The observed data from 14 stations in the Huaihe River–Hongze Lake system, including ammonia nitrogen (AN) and chemical oxygen demand (COD), were used to make long-term water quality predictions. The results suggested that, compared to existing water quality prediction models, the HWQP model has higher accuracy, with the root mean square errors of 6 and 17% for simulating AN and COD, respectively. The AN and COD concentrations will range from 0 to 1 mg/l and from 3 to 5 mg/l at 12 stations, respectively, and the COD concentrations will exceed the water quality target at Stations 4 and 5. The established model has great potential to address the challenges associated with the water environment. |
---|---|
AbstractList | Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via wavelet decomposition, Spearman correlation analysis, and long short-term memory network, respectively. The observed data from 14 stations in the Huaihe River–Hongze Lake system, including ammonia nitrogen (AN) and chemical oxygen demand (COD), were used to make long-term water quality predictions. The results suggested that, compared to existing water quality prediction models, the HWQP model has higher accuracy, with the root mean square errors of 6 and 17% for simulating AN and COD, respectively. The AN and COD concentrations will range from 0 to 1 mg/l and from 3 to 5 mg/l at 12 stations, respectively, and the COD concentrations will exceed the water quality target at Stations 4 and 5. The established model has great potential to address the challenges associated with the water environment. |
Author | Yao, Qiwen Zhu, Hai Hu, Lihan Zhu, Dawei Han, Jianjun Wang, Lingling Yang, Xu Xu, Jin |
Author_xml | – sequence: 1 givenname: Jianjun orcidid: 0009-0008-9100-984X surname: Han fullname: Han, Jianjun – sequence: 2 givenname: Lingling surname: Wang fullname: Wang, Lingling – sequence: 3 givenname: Qiwen surname: Yao fullname: Yao, Qiwen – sequence: 4 givenname: Dawei surname: Zhu fullname: Zhu, Dawei – sequence: 5 givenname: Hai surname: Zhu fullname: Zhu, Hai – sequence: 6 givenname: Jin surname: Xu fullname: Xu, Jin – sequence: 7 givenname: Lihan surname: Hu fullname: Hu, Lihan – sequence: 8 givenname: Xu surname: Yang fullname: Yang, Xu |
BookMark | eNpFkL1OwzAUhS1UJEphZbbEnGA7zt9YVfxJlVhgthznhrgkceo4VGHqM8ACr9cnIW2RmM65ukfnSN85mjSmAYSuKPEZjaKbcsit8Rlh3Gecn6Ap5VHo0Tjgk4PnXkw5PUPnXbcihNEgoVP0OceNeYcKl0NmdY5rk49HYSyuTPPqObA13shR8LqXlXYDbi3kWjltGrzRrsSuBLzbfuegTN2aTu8_u-2XbtredaP5z--2P7jUYKVVpVaywqZ1utYf8lBWWFnDxti3C3RayKqDyz-doZe72-fFg7d8un9czJeeYhFzHqg0T2VCSRImcVywiCpKICYyTDgjQZ4SkBDEWRJEMU8pRBBneRpyFqYsS1UazND1sbe1Zt1D58TK9LYZJ0VA-bgxIorGlH9MKWu6zkIhWqtraQdBidhzFwfuYs9djNyDX4wUgCI |
Cites_doi | 10.1016/j.watres.2024.121856 10.3390/w14040610 10.1016/j.watres.2022.119171 10.32604/cmc.2023.030703 10.3390/w15122157 10.1016/j.scitotenv.2016.06.235 10.1134/S0097807822040212 10.1016/j.envpol.2022.119136 10.1016/j.engappai.2024.108573 10.1029/2023JD039538 10.1016/j.scitotenv.2024.170978 10.1002/wrcr.20268 10.1006/enfo.2001.0061 10.1016/j.jhydrol.2022.127659 10.2166/hydro.2024.273 10.1016/j.scitotenv.2022.159714 10.5194/hess-22-6005-2018 10.1007/s11269-014-0824-7 10.1016/j.jhydrol.2022.128901 10.2166/hydro.2020.055 10.1016/j.matpr.2020.08.588 10.1002/cpe.3745 10.1016/j.energy.2016.06.075 10.3390/w14091322 10.1016/j.jhydrol.2022.128285 10.5194/hess-15-2693-2011 10.3390/hydrology11090155 10.1016/j.scitotenv.2020.144459 10.1016/j.ecolind.2019.01.068 10.1007/s13762-013-0378-x 10.1016/j.watres.2017.07.019 10.3390/app10207079 10.1016/j.jhydrol.2021.127334 10.1016/j.jhydrol.2014.11.050 10.2166/hydro.2024.128 10.1016/j.jhydrol.2019.124488 10.1016/j.jhydrol.2014.10.010 10.2166/wst.2020.596 10.1016/j.jenvman.2017.11.049 10.3389/fbuil.2024.1343398 10.1016/j.jhydrol.2021.126879 10.1109/TPWRS.2005.846054 10.1016/j.scitotenv.2016.07.102 10.1007/s11356-024-32061-2 |
ContentType | Journal Article |
Copyright | Copyright IWA Publishing 2024 |
Copyright_xml | – notice: Copyright IWA Publishing 2024 |
DBID | AAYXX CITATION 7QH 7UA C1K F1W H96 L.G |
DOI | 10.2166/hydro.2024.244 |
DatabaseName | CrossRef Aqualine Water Resources Abstracts Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aqualine ASFA: Aquatic Sciences and Fisheries Abstracts Water Resources Abstracts Environmental Sciences and Pollution Management |
DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 1465-1734 |
EndPage | 3026 |
ExternalDocumentID | 10_2166_hydro_2024_244 |
GroupedDBID | 0R~ 4.4 5GY AAJMC AAJVE AAYXX ABFYC ABLGR ACGFO AECGI AENEX AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CITATION CS3 DU5 EBS GEUZO GROUPED_DOAJ HCIFZ HFPTO HZ~ L7B O9- OK1 P2P R0Z RHI ~02 7QH 7UA C1K F1W H13 H96 L.G |
ID | FETCH-LOGICAL-c262t-ec9d9a81085877f261c10e70a584203d90eae37b8367491e6e7bd9542592b9c93 |
ISSN | 1464-7141 |
IngestDate | Fri Jul 25 23:08:30 EDT 2025 Tue Jul 01 04:10:37 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c262t-ec9d9a81085877f261c10e70a584203d90eae37b8367491e6e7bd9542592b9c93 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0009-0008-9100-984X |
OpenAccessLink | https://iwaponline.com/jh/article-pdf/26/11/3008/1515017/jh2024244.pdf |
PQID | 3142622136 |
PQPubID | 2044529 |
PageCount | 19 |
ParticipantIDs | proquest_journals_3142622136 crossref_primary_10_2166_hydro_2024_244 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2024-11-01 20241101 |
PublicationDateYYYYMMDD | 2024-11-01 |
PublicationDate_xml | – month: 11 year: 2024 text: 2024-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | Journal of hydroinformatics |
PublicationYear | 2024 |
Publisher | IWA Publishing |
Publisher_xml | – name: IWA Publishing |
References | Gers (key-10.2166/hydro.2024.244-16) 1999 key-10.2166/hydro.2024.244-29 key-10.2166/hydro.2024.244-28 key-10.2166/hydro.2024.244-27 key-10.2166/hydro.2024.244-26 key-10.2166/hydro.2024.244-48 key-10.2166/hydro.2024.244-1 key-10.2166/hydro.2024.244-14 key-10.2166/hydro.2024.244-36 key-10.2166/hydro.2024.244-13 key-10.2166/hydro.2024.244-35 key-10.2166/hydro.2024.244-3 key-10.2166/hydro.2024.244-12 key-10.2166/hydro.2024.244-34 key-10.2166/hydro.2024.244-2 key-10.2166/hydro.2024.244-11 key-10.2166/hydro.2024.244-33 key-10.2166/hydro.2024.244-10 key-10.2166/hydro.2024.244-32 Komornikova (key-10.2166/hydro.2024.244-22) 2008; 56 key-10.2166/hydro.2024.244-31 key-10.2166/hydro.2024.244-30 key-10.2166/hydro.2024.244-9 Karthikeyan (key-10.2166/hydro.2024.244-21) 2017; 46 key-10.2166/hydro.2024.244-8 key-10.2166/hydro.2024.244-5 key-10.2166/hydro.2024.244-4 key-10.2166/hydro.2024.244-7 key-10.2166/hydro.2024.244-6 key-10.2166/hydro.2024.244-19 Zhai (key-10.2166/hydro.2024.244-45) 2007; 8 key-10.2166/hydro.2024.244-18 key-10.2166/hydro.2024.244-17 key-10.2166/hydro.2024.244-39 key-10.2166/hydro.2024.244-38 key-10.2166/hydro.2024.244-15 key-10.2166/hydro.2024.244-37 key-10.2166/hydro.2024.244-25 key-10.2166/hydro.2024.244-47 key-10.2166/hydro.2024.244-24 key-10.2166/hydro.2024.244-46 key-10.2166/hydro.2024.244-23 key-10.2166/hydro.2024.244-44 key-10.2166/hydro.2024.244-43 key-10.2166/hydro.2024.244-20 key-10.2166/hydro.2024.244-42 key-10.2166/hydro.2024.244-41 key-10.2166/hydro.2024.244-40 |
References_xml | – ident: key-10.2166/hydro.2024.244-35 doi: 10.1016/j.watres.2024.121856 – ident: key-10.2166/hydro.2024.244-38 doi: 10.3390/w14040610 – ident: key-10.2166/hydro.2024.244-30 doi: 10.1016/j.watres.2022.119171 – ident: key-10.2166/hydro.2024.244-39 doi: 10.32604/cmc.2023.030703 – ident: key-10.2166/hydro.2024.244-18 doi: 10.3390/w15122157 – ident: key-10.2166/hydro.2024.244-4 doi: 10.1016/j.scitotenv.2016.06.235 – ident: key-10.2166/hydro.2024.244-44 doi: 10.1134/S0097807822040212 – start-page: 850 year: 1999 ident: key-10.2166/hydro.2024.244-16 article-title: Learning to forget: Continual prediction with LSTM – ident: key-10.2166/hydro.2024.244-43 doi: 10.1016/j.envpol.2022.119136 – ident: key-10.2166/hydro.2024.244-2 doi: 10.1016/j.engappai.2024.108573 – ident: key-10.2166/hydro.2024.244-27 doi: 10.1029/2023JD039538 – ident: key-10.2166/hydro.2024.244-36 doi: 10.1016/j.scitotenv.2024.170978 – ident: key-10.2166/hydro.2024.244-14 doi: 10.1002/wrcr.20268 – ident: key-10.2166/hydro.2024.244-15 doi: 10.1006/enfo.2001.0061 – ident: key-10.2166/hydro.2024.244-24 doi: 10.1016/j.jhydrol.2022.127659 – ident: key-10.2166/hydro.2024.244-9 doi: 10.2166/hydro.2024.273 – ident: key-10.2166/hydro.2024.244-10 doi: 10.1016/j.scitotenv.2022.159714 – volume: 56 start-page: 145 year: 2008 ident: key-10.2166/hydro.2024.244-22 article-title: A hybrid modelling framework for forecasting monthly reservoir inflows publication-title: Journal of Hydrology and Hydromechanics – ident: key-10.2166/hydro.2024.244-23 doi: 10.5194/hess-22-6005-2018 – volume: 8 start-page: 49 year: 2007 ident: key-10.2166/hydro.2024.244-45 article-title: GIS-based fuzzy comprehensive water quality assessment model publication-title: Journal of Chongqing University(Natural Science Edition) – ident: key-10.2166/hydro.2024.244-29 doi: 10.1007/s11269-014-0824-7 – ident: key-10.2166/hydro.2024.244-5 doi: 10.1016/j.jhydrol.2022.128901 – ident: key-10.2166/hydro.2024.244-25 doi: 10.2166/hydro.2020.055 – ident: key-10.2166/hydro.2024.244-32 doi: 10.1016/j.matpr.2020.08.588 – ident: key-10.2166/hydro.2024.244-40 doi: 10.1002/cpe.3745 – ident: key-10.2166/hydro.2024.244-37 doi: 10.1016/j.energy.2016.06.075 – ident: key-10.2166/hydro.2024.244-47 doi: 10.3390/w14091322 – ident: key-10.2166/hydro.2024.244-41 doi: 10.1016/j.jhydrol.2022.128285 – ident: key-10.2166/hydro.2024.244-28 doi: 10.5194/hess-15-2693-2011 – ident: key-10.2166/hydro.2024.244-1 doi: 10.3390/hydrology11090155 – ident: key-10.2166/hydro.2024.244-20 doi: 10.1016/j.scitotenv.2020.144459 – ident: key-10.2166/hydro.2024.244-8 doi: 10.1016/j.ecolind.2019.01.068 – ident: key-10.2166/hydro.2024.244-11 doi: 10.1007/s13762-013-0378-x – ident: key-10.2166/hydro.2024.244-48 doi: 10.1016/j.watres.2017.07.019 – ident: key-10.2166/hydro.2024.244-12 doi: 10.3390/app10207079 – ident: key-10.2166/hydro.2024.244-19 doi: 10.1016/j.jhydrol.2021.127334 – ident: key-10.2166/hydro.2024.244-31 doi: 10.1016/j.jhydrol.2014.11.050 – ident: key-10.2166/hydro.2024.244-13 doi: 10.2166/hydro.2024.128 – ident: key-10.2166/hydro.2024.244-42 doi: 10.1016/j.jhydrol.2019.124488 – ident: key-10.2166/hydro.2024.244-34 doi: 10.1016/j.jhydrol.2014.10.010 – ident: key-10.2166/hydro.2024.244-46 doi: 10.2166/wst.2020.596 – ident: key-10.2166/hydro.2024.244-3 doi: 10.1016/j.jenvman.2017.11.049 – ident: key-10.2166/hydro.2024.244-17 doi: 10.3389/fbuil.2024.1343398 – ident: key-10.2166/hydro.2024.244-33 doi: 10.1016/j.jhydrol.2021.126879 – ident: key-10.2166/hydro.2024.244-7 doi: 10.1109/TPWRS.2005.846054 – ident: key-10.2166/hydro.2024.244-26 doi: 10.1016/j.scitotenv.2016.07.102 – ident: key-10.2166/hydro.2024.244-6 doi: 10.1007/s11356-024-32061-2 – volume: 46 start-page: 785 year: 2017 ident: key-10.2166/hydro.2024.244-21 article-title: Multivariate analysis for river water quality assessment of the Cauvery river, Tamil Nadu, India publication-title: Indian Journal of Geo-Marine Sciences |
SSID | ssj0021381 |
Score | 2.3403437 |
Snippet | Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study,... |
SourceID | proquest crossref |
SourceType | Aggregation Database Index Database |
StartPage | 3008 |
SubjectTerms | Accuracy Ammonia Artificial intelligence Chemical oxygen demand Correlation analysis Datasets Decomposition Deep learning Environmental management Long short-term memory Mathematical models Neural networks Optimization Oxygen requirement Pollutants Prediction models Regression analysis Simulation Statistical analysis Stream flow Time series Trends Water pollution Water quality Wavelet analysis Wavelet transforms |
Title | A novel hybrid model for long-term water quality prediction with the ‘decomposition–inputs–prediction’ hierarchical optimization framework |
URI | https://www.proquest.com/docview/3142622136 |
Volume | 26 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JbtNAGB6FcoALYhWlBc0BiYPlYI-X8RwjBESVQEJqRcXF8tjjJlWwq9YmSk95BrjAc_EGeRL-2WynKlLhYtkjz3j5P_-b_wWhlyUpQShnHD6kPHJDX3CXZ1Hp0pwUYUBLnmXyj-6Hj_H0KDw4jo5Ho9-DqKW24eP88tq8kv-hKowBXWWW7D9QtlsUBmAf6AtboDBsb0TjiVPV38TCma1k3pXuaqPiBhd1deJKpussM1kFUadOrmRFgGKum4NrByyAxIY7JIWQ8eUmiMuOBvPqrG0uusN-BTvEHNlOW_2QkPSugQd9NcmdTmlDv_6iA89WxXltarc2g7j7qXbLHgB2T9sOvp-Nbxvs55OFFbmSY2XK3_tpvuzz2r7MWh2yvxTzoWeDhCbFr2fGYSxjRXVhrLGwY5HrU-MANRxc59xbpPoDfhx4XjKQ7YGnT70qN4gfSxeGeuixvJUx0VUptwt0XxGcXTgjGFJyhVTNT-X8FObfQrcJ2C7E2vnGC-AHqnNu93C6kqic_3r7-tua0raioLSfw_voniEZnmgMPkAjUT1Ed94LU_D8Efo-wQqLWGMRKyxiICzusIgVFrHBIu6RhCUWMWARb9Y_t1C4Wf_Q-IOd_vzN-hceYg4PMYc7zD1GR-_eHr6Zuqbfh5uTmDSuyFnBskTmwySUlmDb574nqJeBkky8oGCeyERAeRLENGS-iAXlBYtA6jDCWc6CJ2inqivxFGFPalleVLKiiEFKiUQwMCX9MBNxGXHKd9Er-27TM13WJb2eirto37761Hz6F2ngy0YOQMr42Y0X2kN3e5Dvo53mvBXPQaFt-AsFkD-QW6nv |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+hybrid+model+for+long-term+water+quality+prediction+with+the+%E2%80%98decomposition%E2%80%93inputs%E2%80%93prediction%E2%80%99+hierarchical+optimization+framework&rft.jtitle=Journal+of+hydroinformatics&rft.au=Han%2C+Jianjun&rft.au=Wang%2C+Lingling&rft.au=Yao%2C+Qiwen&rft.au=Zhu%2C+Dawei&rft.date=2024-11-01&rft.issn=1464-7141&rft.eissn=1465-1734&rft.volume=26&rft.issue=11&rft.spage=3008&rft.epage=3026&rft_id=info:doi/10.2166%2Fhydro.2024.244&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_hydro_2024_244 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1464-7141&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1464-7141&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1464-7141&client=summon |