A novel hybrid model for long-term water quality prediction with the ‘decomposition–inputs–prediction’ hierarchical optimization framework
Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via...
Saved in:
Published in | Journal of hydroinformatics Vol. 26; no. 11; pp. 3008 - 3026 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
IWA Publishing
01.11.2024
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Accurate, stable, and long-term water quality predictions are essential for water pollution warning and efficient water environment management. In this study, a hierarchical water quality prediction (HWQP) model was developed based on ‘data decomposition–predictor screening–efficient prediction’ via wavelet decomposition, Spearman correlation analysis, and long short-term memory network, respectively. The observed data from 14 stations in the Huaihe River–Hongze Lake system, including ammonia nitrogen (AN) and chemical oxygen demand (COD), were used to make long-term water quality predictions. The results suggested that, compared to existing water quality prediction models, the HWQP model has higher accuracy, with the root mean square errors of 6 and 17% for simulating AN and COD, respectively. The AN and COD concentrations will range from 0 to 1 mg/l and from 3 to 5 mg/l at 12 stations, respectively, and the COD concentrations will exceed the water quality target at Stations 4 and 5. The established model has great potential to address the challenges associated with the water environment. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 1464-7141 1465-1734 |
DOI: | 10.2166/hydro.2024.244 |