Mumford-Shah Loss Functional for Image Segmentation With Deep Learning

Recent state-of-the-art image segmentation algorithms are mostly based on deep neural networks, thanks to their high performance and fast computation time. However, these methods are usually trained in a supervised manner, which requires large number of high quality ground-truth segmentation masks....

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 29; pp. 1856 - 1866
Main Authors Kim, Boah, Ye, Jong Chul
Format Journal Article
LanguageEnglish
Published United States IEEE 2020
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Recent state-of-the-art image segmentation algorithms are mostly based on deep neural networks, thanks to their high performance and fast computation time. However, these methods are usually trained in a supervised manner, which requires large number of high quality ground-truth segmentation masks. On the other hand, classical image segmentation approaches such as level-set methods are formulated in a self-supervised manner by minimizing energy functions such as Mumford-Shah functional, so they are still useful to help generate segmentation masks without labels. Unfortunately, these algorithms are usually computationally expensive and often have limitation in semantic segmentation. In this paper, we propose a novel loss function based on Mumford-Shah functional that can be used in deep-learning based image segmentation without or with small labeled data. This loss function is based on the observation that the softmax layer of deep neural networks has striking similarity to the characteristic function in the Mumford-Shah functional. We show that the new loss function enables semi-supervised and unsupervised segmentation. In addition, our loss function can also be used as a regularized function to enhance supervised semantic segmentation algorithms. Experimental results on multiple datasets demonstrate the effectiveness of the proposed method.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2019.2941265