Increasing power versus duration for radiofrequency ablation with a high superfusate flow: implications for pulmonary vein ablation?

Radiofrequency (RF) ablation of pulmonary veins (PVs) is a new treatment for atrial fibrillation. Low energy ablation is usually used for this procedure. The effect of superfusate flow on lesion formation in this setting has not been studied previously. We examined lesion dimensions and intramural t...

Full description

Saved in:
Bibliographic Details
Published inPacing and clinical electrophysiology Vol. 26; no. 6; pp. 1379 - 1385
Main Authors Guy, Duncan J R, Boyd, Anita, Thomas, Stuart P, Ross, David L
Format Journal Article
LanguageEnglish
Published United States 01.06.2003
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Radiofrequency (RF) ablation of pulmonary veins (PVs) is a new treatment for atrial fibrillation. Low energy ablation is usually used for this procedure. The effect of superfusate flow on lesion formation in this setting has not been studied previously. We examined lesion dimensions and intramural temperatures with varying powers and duration of RF application in this high flow environment. Ablation of fresh bovine hearts was performed with a 4-mm tip RF catheter in temperature control mode, target temperature 50 degrees C. At power levels of 20 W, 30 W, 40 W, and 50 W, effects of PV flow (no flow or 1 L/min) and 60- and 120-second durations were tested. Tissue temperatures were recorded at depths of 1, 4, 7, and 10 mm. Without flow, no lesions were created. The lowest power setting for lesion creation was 30 W at 60 seconds and 20 W at 120 seconds. Increasing power from 30 W to 50 W for 60 seconds increased lesion depth 0.7 mm (SE 0.3), P = 0.03 and 2.5 mm (SE 0.6), P = 0.003, at 120 seconds. Increasing RF application duration from 60 to 120 seconds increased depth for 30 W by 0.9 mm (SE 0.5), P = NS, 40 W 1.7 mm (SE 0.4), P = 0.002, and 50 W 2.6 mm (SE 0.5), P < 0.001. Power of 50 W for 60 seconds and >30 W for 120 seconds created lesions deeper than the wall thickness of a PV. Flow is necessary for creation of lesions with low power, low tip temperature RF ablation. When a resistant site to ablation is encountered, increasing duration of ablation is best for increasing lesion depth. Higher power has the potential to create lesions deeper than the PV wall and may increase the risk of complications.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0147-8389
1540-8159
DOI:10.1046/j.1460-9592.2003.t01-1-00197.x