A novel multiple super junction power device structure with low specific on-resistance
A novel multiple super junction (MS J) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface S J; when compared with 2D-depleting of the conventio...
Saved in:
Published in | Journal of semiconductors Vol. 35; no. 10; pp. 51 - 55 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.10.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A novel multiple super junction (MS J) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface S J; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D- depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom S J, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm. |
---|---|
Bibliography: | Zhu Hui,Li Haiou, Li Qi, Huang Yuanhao, Xu Xiaoning,Zhao Hailiang( 1 Guangxi Experiment Center of Information Science, Guilin University of Electronic Technology, Guilin 541004, China 2 State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu 610054, China) A novel multiple super junction (MS J) LDMOS power device is proposed to decrease Ron due to lateral and vertical interactions between the N-pillar and P-pillar. In the studied device: multiple layers of SJ are introduced oppositely under surface S J; when compared with 2D-depleting of the conventional super junction (CSJ), a 3D- depleted effect is formed in the MSJ thanks to vertical electric field modulation; and, current distribution is improved by deep drain, which increases the drift doping concentration and results in a lower on-resistance. The high electric field around the drain region by substrate-assisted depleted effect is reduced due to the charge balance result from the electric field shielding effect of the bottom S J, which causes the uniform electric field in the drift region and the high breakdown voltage. The numerical simulation results indicate that the specific on-resistance of the MSJ device is reduced by 42% compared with that of CSJ device, while maintaining a high breakdown voltage; the cell pitch of the device is 12 μm. multiple super junction; 3D-depleted; breakdown voltage; specific on-resistance; electric field shield- ing effect 11-5781/TN ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/35/10/104006 |