The intrinsic normal cone
Let (ProQuest: Formulae and/or non-USASCII text omitted; see image) be an algebraic stack in the sense of Deligne-Mumford. We construct a purely (ProQuest: Formulae and/or non-USASCII text omitted; see image) -dimensional algebraic stack over (ProQuest: Formulae and/or non-USASCII text omitted; see...
Saved in:
Published in | Inventiones mathematicae Vol. 128; no. 1; pp. 45 - 88 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Heidelberg
Springer Nature B.V
01.04.1997
|
Online Access | Get full text |
Cover
Loading…
Summary: | Let (ProQuest: Formulae and/or non-USASCII text omitted; see image) be an algebraic stack in the sense of Deligne-Mumford. We construct a purely (ProQuest: Formulae and/or non-USASCII text omitted; see image) -dimensional algebraic stack over (ProQuest: Formulae and/or non-USASCII text omitted; see image) (in the sense of Artin), the intrinsic normal cone (ProQuest: Formulae and/or non-USASCII text omitted; see image) . The notion of (perfect) obstruction theory for (ProQuest: Formulae and/or non-USASCII text omitted; see image) is introduced, and it is shown how to construct, given a perfect obstruction theory for (ProQuest: Formulae and/or non-USASCII text omitted; see image) , a pure-dimensional virtual fundamental class in the Chow group of (ProQuest: Formulae and/or non-USASCII text omitted; see image) . We then prove some properties of such classes, both in the absolute and in the relative context. Via a deformation theory interpretation of obstruction theories we prove that several kinds of moduli spaces carry a natural obstruction theory, and sometimes a perfect one.[PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0020-9910 1432-1297 |
DOI: | 10.1007/s002220050136 |