LOW CONCENTRATION OZONE FOR SURFACE DISINFECTION AGAINST SARS-COV-2 AND FELINE CORONAVIRUS

Surface and environment disinfection is an important part of infection control strategies, especially in the ongoing COVID-19 pandemic. Ozone, a highly reactive oxidant, is a widely used disinfectant in many industries including food, healthcare and water treatment. It has a broad-spectrum activity...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of infectious diseases Vol. 130; p. S102
Main Authors Tiong, V., Hassandarvish, P., Tham, P., Lu, D., AbuBakar, S.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.05.2023
Published by Elsevier Ltd
Elsevier
Online AccessGet full text

Cover

Loading…
More Information
Summary:Surface and environment disinfection is an important part of infection control strategies, especially in the ongoing COVID-19 pandemic. Ozone, a highly reactive oxidant, is a widely used disinfectant in many industries including food, healthcare and water treatment. It has a broad-spectrum activity and leaves no harmful residues. However, most demonstrated efficacy has been at high ozone levels (>1ppm) which can be harmful to humans in case of exposure. Here, we undertook a study to evaluate if exposure to ozone is effective in inactivating SARS-CoV-2 and feline coronavirus (FCoV) even at low concentrations. Ozone at 0.07, 0.1 and 1.2 ppm were evaluated for its virucidal activity against SARS-CoV-2 and FCoV. An ozone gas generator (Medklinn Air + Surface Sterilizer (CerafusionTM Technology), Medklinn, Malaysia) supplied controlled levels of ozone to a custom-built chamber of 1.5 ft3 (1.5ft x 1ft x 1ft) where dry virus films containing 1 × 104 PFU of test virus were exposed to ozone gas for 0.5h, 1h, 3h, 5h, and 8h. The experiment was performed at ambient temperature (23-24oC) and relative humidity (RH) of 55% (FCoV only) and 85% (SARS-CoV-2 and FCoV). At low level of ozone of 0.1ppm, >90% reduction of both viruses was achieved after 3h exposure at 85% and 55% humidity. At 1.2ppm, >90% reduction of both viruses was achieved after 0.5h exposure at 85% humidity. Ozone at 0.07ppm, however, did not show good efficacy as reduction not exceeding 90% was achieved only after 8h exposure at 85% and 55% humidity. The study demonstrated that low concentration of ozone of at least 0.1 ppm reduced SARS-CoV-2 and FCoV by >90% when used at 85% humidity. The use of low level ozone presents a safer alternative for disinfecting enclosed spaces and greatly reduces any potential harmful health effects in case of accidental exposure.
ISSN:1201-9712
1878-3511
DOI:10.1016/j.ijid.2023.04.254