Total dose effects on the g–r noise of JFET transistors
Silicon junction field effect transistors(JFETs) have been exposed to Co-(60)-rays to study radiationinduced effects on their dc characteristics and noise. The devices have been irradiated and measured at room temperature up to an accumulated 100 krad(Si) dose of radiation at a dose rate of 0.1 rad(...
Saved in:
Published in | Journal of semiconductors Vol. 37; no. 3; pp. 58 - 60 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.03.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Silicon junction field effect transistors(JFETs) have been exposed to Co-(60)-rays to study radiationinduced effects on their dc characteristics and noise. The devices have been irradiated and measured at room temperature up to an accumulated 100 krad(Si) dose of radiation at a dose rate of 0.1 rad(Si)/s. During irradiation,the generation–recombination(g–r) noise increase has been observed while the dc characteristics of the transistors were kept unchanged. The increasing of the density of the same type point defects and their probability of trapping and detrapping carriers caused by irradiation have been used to explain the g–r noise amplitude increase, while the g–r noise characteristic frequency has only a slight change. |
---|---|
Bibliography: | radiation junction field-effect transistors generation–recombination noise 11-5781/TN Silicon junction field effect transistors(JFETs) have been exposed to Co-(60)-rays to study radiationinduced effects on their dc characteristics and noise. The devices have been irradiated and measured at room temperature up to an accumulated 100 krad(Si) dose of radiation at a dose rate of 0.1 rad(Si)/s. During irradiation,the generation–recombination(g–r) noise increase has been observed while the dc characteristics of the transistors were kept unchanged. The increasing of the density of the same type point defects and their probability of trapping and detrapping carriers caused by irradiation have been used to explain the g–r noise amplitude increase, while the g–r noise characteristic frequency has only a slight change. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-4926 |
DOI: | 10.1088/1674-4926/37/3/034005 |