Biphasic behavior of energy in a stepped chain
The impact energy decay in a step-up chain containing two sections is numerically studied.There is a marked biphasic behavior of energy decay in the first section.Two sections close to the interface are in compression state.The degree of compression of the first section first decreases and becomes w...
Saved in:
Published in | Chinese physics B Vol. 25; no. 6; pp. 279 - 282 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.06.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 1674-1056 2058-3834 1741-4199 |
DOI | 10.1088/1674-1056/25/6/064501 |
Cover
Summary: | The impact energy decay in a step-up chain containing two sections is numerically studied.There is a marked biphasic behavior of energy decay in the first section.Two sections close to the interface are in compression state.The degree of compression of the first section first decreases and becomes weakest at "crossing" time of biphasic behavior of energy,then increases.The further calculations provide the dependence of the character time on mass ratio(m1/m2),where m1 and m2are the particle mass in the first and second section respectively.The bigger the α(α = [(? m1-m2)/(? m1+ m2)]2 with? = 1.345),the bigger the energy ratio is.The multipulse structure restricts the transport of energy. |
---|---|
Bibliography: | The impact energy decay in a step-up chain containing two sections is numerically studied.There is a marked biphasic behavior of energy decay in the first section.Two sections close to the interface are in compression state.The degree of compression of the first section first decreases and becomes weakest at "crossing" time of biphasic behavior of energy,then increases.The further calculations provide the dependence of the character time on mass ratio(m1/m2),where m1 and m2are the particle mass in the first and second section respectively.The bigger the α(α = [(? m1-m2)/(? m1+ m2)]2 with? = 1.345),the bigger the energy ratio is.The multipulse structure restricts the transport of energy. granular chain;solitary;biphasic behavior Ping-Jian Wang,Ai-Xiang He,Zhong-Hai Lin,Guang-Fen Wei,Yan-Li Liu 11-5639/O4 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1674-1056 2058-3834 1741-4199 |
DOI: | 10.1088/1674-1056/25/6/064501 |