Particle swarm optimization for the shortest path problem
Solving the shortest path problem is very difficult in situations such as emergency rescue after a typhoon: road-damage caused by a typhoon causes the weight of the rescue path to be uncertain and impossible to represent using single, precise numbers. In such uncertain environments, neutrosophic num...
Saved in:
Published in | Journal of intelligent & fuzzy systems Vol. 41; no. 1; pp. 1353 - 1373 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Amsterdam
IOS Press BV
01.01.2021
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Solving the shortest path problem is very difficult in situations such as emergency rescue after a typhoon: road-damage caused by a typhoon causes the weight of the rescue path to be uncertain and impossible to represent using single, precise numbers. In such uncertain environments, neutrosophic numbers can express the edge distance more effectively: membership in a neutrosophic set has different degrees of truth, indeterminacy, and falsity. This paper proposes a shortest path solution method for interval-valued neutrosophic graphs using the particle swarm optimization algorithm. Furthermore, by comparing the proposed algorithm with the Dijkstra, Bellman, and ant colony algorithms, potential shortcomings and advantages of the proposed method are deeply explored, and its effectiveness is verified. Sensitivity analysis performed using a 2020 typhoon as a case study is presented, as well as an investigation on the efficiency of the algorithm under different parameter settings to determine the most reasonable settings. Particle swarm optimization is a promising method for dealing with neutrosophic graphs and thus with uncertain real-world situations. |
---|---|
ISSN: | 1064-1246 1875-8967 |
DOI: | 10.3233/JIFS-210233 |