On the On-line Learning Algorithms for EEG Signal Classification in Brain Computer Interfaces

The on-line update of classifiers is an important concern for categorizing the time-varying neurophysiological signals used in brain computer interfaces, e.g. classification of electroencephalographic (EEG) signals. However, up to the present there is not much work dealing with this issue. In this p...

Full description

Saved in:
Bibliographic Details
Published inFuzzy Systems and Knowledge Discovery pp. 638 - 647
Main Authors Sun, Shiliang, Zhang, Changshui, Lu, Naijiang
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The on-line update of classifiers is an important concern for categorizing the time-varying neurophysiological signals used in brain computer interfaces, e.g. classification of electroencephalographic (EEG) signals. However, up to the present there is not much work dealing with this issue. In this paper, we propose to use the idea of gradient decorrelation to develop the existent basic Least Mean Square (LMS) algorithm for the on-line learning of Bayesian classifiers employed in brain computer interfaces. Under the framework of Gaussian mixture model, we give the detailed representation of Decorrelated Least Mean Square (DLMS) algorithm for updating Bayesian classifiers. Experimental results of off-line analysis for classification of real EEG signals show the superiority of the on-line Bayesian classifier using DLMS algorithm to that using LMS algorithm.
ISBN:3540283315
9783540283317
3540283129
9783540283126
ISSN:0302-9743
1611-3349
DOI:10.1007/11540007_79