Improving the Cooperation Between the Master Problem and the Subproblem in Constraint Programming Based Column Generation

Constraint programming (CP) based column generation uses CP to solve the pricing subproblem. We consider a set partitioning formulation with a huge number of variables, each of which can be generated by solving a CP subproblem. We propose two customized search strategies to solve the CP subproblem,...

Full description

Saved in:
Bibliographic Details
Published inIntegration of AI and OR Techniques in Constraint Programming for Combinatorial Optimization Problems pp. 217 - 227
Main Authors Gendron, Bernard, Lebbah, Hocine, Pesant, Gilles
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Constraint programming (CP) based column generation uses CP to solve the pricing subproblem. We consider a set partitioning formulation with a huge number of variables, each of which can be generated by solving a CP subproblem. We propose two customized search strategies to solve the CP subproblem, which aim to improve the coordination between the master problem and the subproblem. Specifically, these two strategies attempt to generate more promising columns for the master problem in order to counter the effect of slow convergence and the difficulty of reaching integer solutions. The first strategy uses the dual variables to direct the search towards columns that drive the relaxed master problem faster to optimality. The second strategy exploits the structure of the constraints in the master problem to generate columns that help to reach integer solutions more quickly. We use a physician scheduling problem to test the strategies.
ISBN:9783540261520
3540261524
ISSN:0302-9743
1611-3349
DOI:10.1007/11493853_17