Plasmonic Nanorattles as Next-Generation Catalysts for Surface Plasmon Resonance-Mediated Oxidations Promoted by Activated Oxygen

Nanorattles, comprised of a nanosphere inside a nanoshell, were employed as the next generation of plasmonic catalysts for oxidations promoted by activated O2. After investigating how the presence of a nanosphere inside a nanoshell affected the electric‐field enhancements in the nanorattle relative...

Full description

Saved in:
Bibliographic Details
Published inAngewandte Chemie Vol. 128; no. 25; pp. 7227 - 7231
Main Authors da Silva, Anderson G. M., Rodrigues, Thenner S., Correia, Valquírio G., Alves, Tiago V., Alves, Rafael S., Ando, Rômulo A., Ornellas, Fernando R., Wang, Jiale, Andrade, Leandro H., Camargo, Pedro H. C.
Format Journal Article
LanguageEnglish
German
Published Weinheim Blackwell Publishing Ltd 13.06.2016
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanorattles, comprised of a nanosphere inside a nanoshell, were employed as the next generation of plasmonic catalysts for oxidations promoted by activated O2. After investigating how the presence of a nanosphere inside a nanoshell affected the electric‐field enhancements in the nanorattle relative to a nanoshell and a nanosphere, the SPR‐mediated oxidation of p‐aminothiophenol (PATP) functionalized at their surface was investigated to benchmark how these different electric‐field intensities affected the performances of Au@AgAu nanorattles, AgAu nanoshells and Au nanoparticles having similar sizes. The high performance of the nanorattles enabled the visible‐light driven synthesis of azobenzene from aniline under ambient conditions. As the nanorattles allow the formation of electromagnetic hot spots without relying on the uncontrolled aggregation of nanostructures, it enables their application as catalysts in liquid phase under mild conditions using visible light as the main energy input. Nanorasseln: Durch Nutzung des Plasmonenhybridisierungskonzepts in Au@AgAu‐Nanorasseln wurden bessere Leistungen für die von Oberflächenplasmonenresonanzen vermittelte Aminoxidation erzielt. Da die Nanorasselmorphologie die Bildung elektromagnetischer Hotspots ermöglicht, sind diese Materialien attraktive plasmonische Katalysatoren der nächsten Generation für Anwendungen in Flüssigphasenumwandlungen unter milden Bedingungen.
Bibliography:FAPESP
CNPq
istex:C3E370809FA5AD000A2B9C4D760D700FDC98D9C2
ArticleID:ANGE201601740
FAPESP - No. 2013/19861-6; No. 2015/21366-9
CAPES
ark:/67375/WNG-KPBSZCWD-H
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0044-8249
1521-3757
DOI:10.1002/ange.201601740