Magnetic field sensing using whispering-gallery modes in a cylindrical microresonator infiltrated with ferronematic liquid crystal
An all-fiber magnetic field sensor based on whispering-gallery modes (WGM) in a fiber micro-resonator infiltrated with ferronematic liquid crystal is proposed and experimentally demonstrated. The cylindrical microresonator is formed by a 1 cm-long section of a photonic crystal fiber infiltrated with...
Saved in:
Published in | Optics express Vol. 25; no. 11; pp. 12195 - 12202 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
29.05.2017
|
Online Access | Get full text |
Cover
Loading…
Summary: | An all-fiber magnetic field sensor based on whispering-gallery modes (WGM) in a fiber micro-resonator infiltrated with ferronematic liquid crystal is proposed and experimentally demonstrated. The cylindrical microresonator is formed by a 1 cm-long section of a photonic crystal fiber infiltrated with ferronematic materials. Both ferronematics suspensions are prepared based on the nematic liquid crystal 1-(trans-4-Hexylcyclohexyl)-4-isothiocyanatobenzene (6CHBT) doped with rod-like magnetic particles in the first case and with spherical magnetic particles in the second case. WGMs are excited in the fiber microresonator by evanescent light coupling using a tapered fiber with a micron-size diameter. The Q-factor of the microresonator determined from the experimentaly measured transmission spectrum of the tapered fiber was 1.975 × 10
. Under the influence of an applied magnetic field the WGM resonances experience spectral shift towards shorter wavelengths. The experimentally demonstrated sensitivity of the proposed sensor was -39.6 pm/mT and -37.3 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for a magnetic field range (0-47) mT. Reducing the diameter of the cylindrical micro-resonator by tapering leads to enhancement of the magnetic field sensitivity up to -61.86 pm/mT and -49.88 pm/mT for samples infiltrated with rod like and spherical like ferromagnetic suspensions respectively for the magnetic field range (0-44.7) mT. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.25.012195 |