Aluminum surface modification by electron-ion-plasma methods

The paper focuses on detection and structural-phase justification of the modes of combined electron-ion plasma treatment of commercially pure A7 grade aluminum carried out in a single vacuum cycle and enabling to enhance mechanical (microhardness) and tribological (wear resistance) properties of the...

Full description

Saved in:
Bibliographic Details
Published inMATEC Web of Conferences Vol. 143; p. 3007
Main Authors Krysina, Olga, Petrikova, Elizaveta, Shugurov, Vladimir, Moskvin, Pavel, Ivanov, Yurii
Format Journal Article Conference Proceeding
LanguageEnglish
Published Les Ulis EDP Sciences 01.01.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The paper focuses on detection and structural-phase justification of the modes of combined electron-ion plasma treatment of commercially pure A7 grade aluminum carried out in a single vacuum cycle and enabling to enhance mechanical (microhardness) and tribological (wear resistance) properties of the material. Commercially pure A7 grade aluminum underwent combined surface treatment, including deposition of titanium coating by means of vacuum-arc technique and further mixing of the coating/substrate system by intense pulsed electron beam. The varied parameters were energy density of the electron beam (10, 15, 20) J/cm2 and the number of impact pulses (3-100); the thickness of titanium coating was 0.5 μm. Electron-ion plasma treatment of aluminum was carried out in a single vacuum cycle. Optical and scanning electron microscope investigations, measuring of microhardness and tribological tests allowed defining the modes when hardness and wear resistance of the modified surface layer increases manifold in comparison to the initial properties of commercially pure aluminum.
ISSN:2261-236X
2274-7214
2261-236X
DOI:10.1051/matecconf/201714303007