Viscosity, yield stress and compressive strength of cement-based grout modified with polymers
In this study, two types of polycarboxylate (PCE) polymer (DBC-21 and VK-98) were used as additives in the cement-based grout. The water-cement ratio (w/c) was fixed to 0.6 and 1.0 at temperature of 25° Celsius and 50° Celsius. Experimentalists were conducted to study the chemical composition of th...
Saved in:
Published in | Results in materials Vol. 4; p. 100043 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.12.2019
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this study, two types of polycarboxylate (PCE) polymer (DBC-21 and VK-98) were used as additives in the cement-based grout. The water-cement ratio (w/c) was fixed to 0.6 and 1.0 at temperature of 25° Celsius and 50° Celsius. Experimentalists were conducted to study the chemical composition of the cement-based grout, the mass loss, the rheology behavior, and the compressive strength. Numerical studies were performed to understand the shear strength, rheological properties and compressive strength by taking advantages of numerical models. The results show that the 0.16% PCE polymer additive leads to low cement weight loss at 800° Celsius, drastic increase of apparent and plastic viscosity, and significant improvement of compressive strength. Effects of polymer content, w/c, curing period and the temperature on the rheological properties and compressive strength (CS) of cement-based grout were investigated using a multiple nonlinear regression analysis.
•Testing.•Modeling.•Analysis. |
---|---|
ISSN: | 2590-048X 2590-048X |
DOI: | 10.1016/j.rinma.2019.100043 |