Paxos made EPR: decidable reasoning about distributed protocols
Distributed protocols such as Paxos play an important role in many computer systems. Therefore, a bug in a distributed protocol may have tremendous effects. Accordingly, a lot of effort has been invested in verifying such protocols. However, checking invariants of such protocols is undecidable and h...
Saved in:
Published in | Proceedings of ACM on programming languages Vol. 1; no. OOPSLA; pp. 1 - 31 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
01.10.2017
|
Online Access | Get full text |
Cover
Loading…
Summary: | Distributed protocols such as Paxos play an important role in many computer systems. Therefore, a bug in a distributed protocol may have tremendous effects. Accordingly, a lot of effort has been invested in verifying such protocols. However, checking invariants of such protocols is undecidable and hard in practice, as it requires reasoning about an unbounded number of nodes and messages. Moreover, protocol actions and invariants involve both quantifier alternations and higher-order concepts such as set cardinalities and arithmetic.
This paper makes a step towards automatic verification of such protocols. We aim at a technique that can verify correct protocols and identify bugs in incorrect protocols. To this end, we develop a methodology for deductive verification based on effectively propositional logic (EPR)—a decidable fragment of first-order logic (also known as the Bernays-Schönfinkel-Ramsey class). In addition to decidability, EPR also enjoys the finite model property, allowing to display violations as finite structures which are intuitive for users. Our methodology involves modeling protocols using general (uninterpreted) first-order logic, and then systematically transforming the model to obtain a model and an inductive invariant that are decidable to check. The steps of the transformations are also mechanically checked, ensuring the soundness of the method. We have used our methodology to verify the safety of Paxos, and several of its variants, including Multi-Paxos, Vertical Paxos, Fast Paxos, Flexible Paxos and Stoppable Paxos. To the best of our knowledge, this work is the first to verify these protocols using a decidable logic, and the first formal verification of Vertical Paxos, Fast Paxos and Stoppable Paxos. |
---|---|
ISSN: | 2475-1421 2475-1421 |
DOI: | 10.1145/3140568 |