Identification of Zika virus NS2B-NS3 protease and NS5 polymerase inhibitors by structure-based virtual screening of FDA-approved drugs

Zika virus (ZIKV) is a mosquito-borne human flavivirus responsible that causing emergency outbreaks in Brazil. ZIKV is suspected of causing Guillain-Barre syndrome in adults and microcephaly. The NS2B-NS3 protease and NS5 RNA-dependent RNA polymerase (RdRp), central to ZIKV multiplication, have been...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics Vol. 42; no. 15; pp. 8073 - 8088
Main Authors Ezzemani, Wahiba, Altawalah, Haya, Windisch, Marc, Ouladlahsen, Ahd, Saile, Rachid, Kettani, Anass, Ezzikouri, Sayeh
Format Journal Article
LanguageEnglish
Published England 12.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Zika virus (ZIKV) is a mosquito-borne human flavivirus responsible that causing emergency outbreaks in Brazil. ZIKV is suspected of causing Guillain-Barre syndrome in adults and microcephaly. The NS2B-NS3 protease and NS5 RNA-dependent RNA polymerase (RdRp), central to ZIKV multiplication, have been identified as attractive molecular targets for drugs. We performed a structure-based virtual screening of 2,659 FDA-approved small molecule drugs in the DrugBank database using AutoDock Vina in PyRx v0.8. Accordingly, 15 potential drugs were selected as ZIKV inhibitors because of their high values (binding affinity - binding energy) and we analyzed the molecular interactions between the active site amino acids and the compounds. Among these drugs, tamsulosin was found to interact most efficiently with NS2B/NS3 protease, as indicated by the lowest binding energy value (-8.27 kJ/mol), the highest binding affinity (-5.7 Kcal/mol), and formed H-bonds with amino acid residues TYRB130, SERB135, TYRB150. Furthermore, biotin was found to interact most efficiently with NS5 RdRp with a binding energy of -150.624 kJ/mol, a binding affinity of -5.6 Kcal/mol, and formed H-bonds with the amino acid residues ASPA665 and ASPA540. , , and clinical studies are needed to demonstrate anti-ZIKV safety and the efficacy of these FDA-approved drug candidates.Communicated by Ramaswamy H. Sarma.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-1102
1538-0254
1538-0254
DOI:10.1080/07391102.2023.2242963