Dynamics of Arrhenius activation energy in flow of Carreau fluid subject to Brownian motion diffusion

Nanofluid comprising nanometer sized materials, called nanoparticles. These liquids are built colloidal suspensions of nanomaterials in a continuous phase liquid. The nanomaterials utilized in nanoliquids are typically made of carbon nanotubes, oxides and metals. In this research, communication, the...

Full description

Saved in:
Bibliographic Details
Published inNumerical methods for partial differential equations Vol. 39; no. 6; pp. 4468 - 4488
Main Authors Ijaz Khan, Muhammad, Qayyum, Sumaira, Nigar, Mehr, Chu, Yu‐Ming, Kadry, Seifedine
Format Journal Article
LanguageEnglish
Published New York Wiley Subscription Services, Inc 01.11.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Nanofluid comprising nanometer sized materials, called nanoparticles. These liquids are built colloidal suspensions of nanomaterials in a continuous phase liquid. The nanomaterials utilized in nanoliquids are typically made of carbon nanotubes, oxides and metals. In this research, communication, the impact of Brownian diffusion and thermophoresis is addressed in flow of non‐Newtonian fluid towards shrinking/stretching the surface. The energy equation is developed subjesct to dissipation, radiative flux (nonlinear) and Ohmic heating. The activation energy is further considered for chemical reaction. The nonlinear flow expressions are transformed into ordinary differential equations with the help of similarity transformations. The obtained systems of ordinary differential equation's are numerically solved through Shooting method (bvp4c). The concentration, temperature and velocity profiles are determined graphically. Mass transfer, surface drag force and heat transfer rate are shown by tables. At last, entropy and Bejan number are discussed through graphs in which entropy showed increasing behavior for magnetic, radiation, Brinkman and diffusivity parameter but Bejan number showed opposite behavior for them.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0749-159X
1098-2426
DOI:10.1002/num.22615