Charm structure functions and gluon shadowing effects with the AdS/CFT model
By means of the UGD function extracted from an AdS/CFT inspired saturation model, the charm and bottom structure functions are studied in fixed-order perturbation theory. It is shown that the theoretical results are in good agreement with the recent HERA data. Then, this UGD function is also used to...
Saved in:
Published in | Chinese physics C Vol. 36; no. 8; pp. 691 - 696 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
01.08.2012
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | By means of the UGD function extracted from an AdS/CFT inspired saturation model, the charm and bottom structure functions are studied in fixed-order perturbation theory. It is shown that the theoretical results are in good agreement with the recent HERA data. Then, this UGD function is also used to investigate net-kaon rapidity distribution in Au+Au collisions at RHIC energies and the theoretical results fit well to the BRAHMS data. In the end of this paper, we give the predicted results for nuclear charm structure function at very small x where the popular shadowing parameterizations are invalid. |
---|---|
Bibliography: | 11-5641/O4 AdS/CFT inspired model, unintegrated gluon distribution, shadowing effect By means of the UGD function extracted from an AdS/CFT inspired saturation model, the charm and bottom structure functions are studied in fixed-order perturbation theory. It is shown that the theoretical results are in good agreement with the recent HERA data. Then, this UGD function is also used to investigate net-kaon rapidity distribution in Au+Au collisions at RHIC energies and the theoretical results fit well to the BRAHMS data. In the end of this paper, we give the predicted results for nuclear charm structure function at very small x where the popular shadowing parameterizations are invalid. ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
ISSN: | 1674-1137 0254-3052 |
DOI: | 10.1088/1674-1137/36/8/002 |