Accessible interferometric autocorrelator for noise-like pulses based on a Fabry-Perot cavity
In this work, we develop experimentally a Fabry-Perot fiber optic interferometer applied to the measurement of autocorrelation of complex dynamic pulses generated by a figure-eight fiber laser. The principle is based in the superposition of multiple pulses, which requires two partially reflecting fl...
Saved in:
Published in | Optics express Vol. 31; no. 18; p. 29452 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
28.08.2023
|
Online Access | Get full text |
Cover
Loading…
Summary: | In this work, we develop experimentally a Fabry-Perot fiber optic interferometer applied to the measurement of autocorrelation of complex dynamic pulses generated by a figure-eight fiber laser. The principle is based in the superposition of multiple pulses, which requires two partially reflecting flat surfaces in parallel, resulting in a simple and compact autocorrelator design. The autocorrelation trace obtained exhibits a typical double-scaled structure for noise-like pulses (NLPs), with an ultrashort coherence spur on the order of 100 fs riding upon a broad pedestal of 120 ps. Finally, we show experimentally that the developed Fabry-Perot device is able to measure accurately the autocorrelation of NLPs, as confirmed by comparing the measurement with that of a conventional autocorrelator scheme based on a Michelson interferometer, with the additional advantages of a more compact setup and a much easier alignment procedure compared to the latter. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.498298 |