Computational modeling to understand the interaction of TMPyP4 with a G-quadruplex

The potential of small molecules to bind to G-quadruplex-forming sequences in oncogene promoter regions, thereby regulating their structural equilibrium, has been explored as a promising strategy for cancer chemotherapy. The model drug 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) has be...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomolecular structure & dynamics pp. 1 - 7
Main Authors Liyanage, Senal D., Bowleg, Jerrano L., Gwaltney, Steven R.
Format Journal Article
LanguageEnglish
Published England 23.10.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The potential of small molecules to bind to G-quadruplex-forming sequences in oncogene promoter regions, thereby regulating their structural equilibrium, has been explored as a promising strategy for cancer chemotherapy. The model drug 5,10,15,20-tetrakis-(N-methyl-4-pyridyl)porphine (TMPyP4) has been shown to have an affinity toward G-quadruplex DNA. However, the precise sites and modes of TMPyP4 binding to G-quadruplex DNA remain a subject of debate. In this study, we focus on identifying potential binding sites on a mutant c-MYC sequence known to fold into a single 1:2:1 loop isomer quadruplex. Our findings provide insights into the 4:1 stoichiometry reported for TMPyP4 binding to this G-quadruplex. Binding enthalpy and free energy calculations show that intercalation of a TMPyP4 molecule between the quadruplexes is thermodynamically favorable. Our calculations suggest that two of the binding sites are located at the top and bottom of the quadruplex, respectively, while the remaining two are likely intercalations.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0739-1102
1538-0254
1538-0254
DOI:10.1080/07391102.2024.2417378