Interfacial synthesis of polypyrrole microparticles for effective dissipation of electromagnetic waves
A strategy has been adopted to regulate the dielectric properties of polypyrrole microparticles for good electromagnetic absorption performance through an interfacial synthesis process. Classical Debye relaxation theory and resistor-capacitor model have been employed to illustrate the electromagneti...
Saved in:
Published in | Journal of applied physics Vol. 118; no. 20 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
28.11.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A strategy has been adopted to regulate the dielectric properties of polypyrrole microparticles for good electromagnetic absorption performance through an interfacial synthesis process. Classical Debye relaxation theory and resistor-capacitor model have been employed to illustrate the electromagnetic dissipation mechanism of polypyrrole microparticles. The prepared polypyrrole microparticles exhibit an effective electromagnetic absorption bandwidth 5.48 GHz (deeper than −10 dB) from 12.52 to 18 GHz with a filler loading of 15 wt. % in paraffin. It was demonstrated that the morphologies of conducting polymers can significantly affect the dissipation of electromagnetic waves, supplying a strategy for the design of effective electromagnetic absorption materials. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ISSN: | 0021-8979 1089-7550 |
DOI: | 10.1063/1.4936549 |