Genetic improvement of fungal β-mannanase and its molecular differentiation

Background and objective β-Mannanase is an enzyme that has great potential in many industrial application including feed, food, pharmaceutical, cosmetics, production of mannan and manooligosaccharides, pulp and paper, bioethanol and biodiesel productions, and oil and textile industries. The aim of t...

Full description

Saved in:
Bibliographic Details
Published inEgyptian pharmaceutical journal Vol. 18; no. 4; pp. 403 - 410
Main Authors Abosereh, Nivien, Ismail, Siham, Khattab, Om, Nour, Shaimaa, Abo-Elnasr, Amany, Hashem, Amal
Format Journal Article
LanguageEnglish
Published Wolters Kluwer India Pvt. Ltd 01.10.2019
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Background and objective β-Mannanase is an enzyme that has great potential in many industrial application including feed, food, pharmaceutical, cosmetics, production of mannan and manooligosaccharides, pulp and paper, bioethanol and biodiesel productions, and oil and textile industries. The aim of this study was to describe the potential of gamma and ultraviolet (UV) rays to optimize the production of industrially important β-mannanase enzyme by subjecting Penicillium citrinium Egy5LC368457 to these rays. Materials and methods Various doses and times of UV and gamma irradiation were used. Genetic diversity was resolved by mistreatment with the Random Amplified Polymorphic Polymer (RAPD-PCR) technique. Ten RAPD oligonucleotide primers amplifying DNA of β-mannanase showed reproducible banding patterns. Results and conclusion The results of this study revealed the highest β-mannanase activity was produced by gamma ray 150 Gy (37.42 IU/ml) with 2.27-fold higher than the wild type. A total of 64 bands were obtained from nine of these markers with 44% polymorphic bands. The size of the amplified bands ranged between ∼75 and 3000 bp. The genetic polymorphism value of each primer was determined, which ranged between 2 and 9 bands. The primer efficiency of amplification ranged between 3.13 and 23.44%, and the discriminatory power ranged from 4.5 to 25. In conclusion, UV and gamma ray irradiation can induct mutations, which can be carefully acclimatized and commercially propagated under suitable condition. RAPD technique could be successfully applied to the newly β-mannanase and can differentiate mutants.
ISSN:1687-4315
2090-9853
DOI:10.4103/epj.epj_32_19