Neural Network-Based Adaptive Boundary Control of a Flexible Riser With Input Deadzone and Output Constraint

In this article, vibration abatement problems of a riser system with system uncertainty, input deadzone, and output constraint are considered. For obtaining better control precision, a boundary control law is constructed by employing the backstepping method and Lyapunov's theory. The output con...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on cybernetics Vol. 52; no. 12; pp. 13120 - 13128
Main Authors Liu, Yu, Wang, Yinna, Feng, Yanghe, Wu, Yilin
Format Journal Article
LanguageEnglish
Published Piscataway IEEE 01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:In this article, vibration abatement problems of a riser system with system uncertainty, input deadzone, and output constraint are considered. For obtaining better control precision, a boundary control law is constructed by employing the backstepping method and Lyapunov's theory. The output constraint is guaranteed by utilizing a barrier Lyapunov function. Adaptive neural networks are designed to cope with the uncertainty of the riser and compensate for the effect caused by the asymmetric deadzone nonlinearity. With the designed controller, the output constraint is satisfied, and the system stability is guaranteed through Lyapunov synthesis. In the end, numerical simulation results are provided to display the performance of the developed adaptive neural network boundary control law.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:2168-2267
2168-2275
2168-2275
DOI:10.1109/TCYB.2021.3102160