Neural Network-Based Adaptive Boundary Control of a Flexible Riser With Input Deadzone and Output Constraint
In this article, vibration abatement problems of a riser system with system uncertainty, input deadzone, and output constraint are considered. For obtaining better control precision, a boundary control law is constructed by employing the backstepping method and Lyapunov's theory. The output con...
Saved in:
Published in | IEEE transactions on cybernetics Vol. 52; no. 12; pp. 13120 - 13128 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Piscataway
IEEE
01.12.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In this article, vibration abatement problems of a riser system with system uncertainty, input deadzone, and output constraint are considered. For obtaining better control precision, a boundary control law is constructed by employing the backstepping method and Lyapunov's theory. The output constraint is guaranteed by utilizing a barrier Lyapunov function. Adaptive neural networks are designed to cope with the uncertainty of the riser and compensate for the effect caused by the asymmetric deadzone nonlinearity. With the designed controller, the output constraint is satisfied, and the system stability is guaranteed through Lyapunov synthesis. In the end, numerical simulation results are provided to display the performance of the developed adaptive neural network boundary control law. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ISSN: | 2168-2267 2168-2275 2168-2275 |
DOI: | 10.1109/TCYB.2021.3102160 |