The Controlled Center Dynamics
The center manifold theorem is a model reduction technique for determining the local asymptotic stability of an equilibrium of a dynamical system when its linear part is not hyperbolic. The overall system is asymptotically stable if and only if the center manifold dynamics is asymptotically stable....
Saved in:
Published in | Multiscale modeling & simulation Vol. 3; no. 4; pp. 838 - 852 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
Society for Industrial and Applied Mathematics
01.01.2005
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | The center manifold theorem is a model reduction technique for determining the local asymptotic stability of an equilibrium of a dynamical system when its linear part is not hyperbolic. The overall system is asymptotically stable if and only if the center manifold dynamics is asymptotically stable. This allows for a substantial reduction in the dimension of the system whose asymptotic stability must be checked. Moreover, the center manifold and its dynamics need not be computed exactly; frequently, a low degree approximation is sufficient to determine its stability. The controlled center dynamics plays a similar role in determining local stabilizability of an equilibrium of a control system when its linear part is not stabilizable. It is a reduced order control system with a pseudoinput to be chosen in order to stabilize it. If this is successful, then the overall control system is locally stabilizable to the equilibrium. Again, usually low degree approximation suffices. |
---|---|
ISSN: | 1540-3459 1540-3467 |
DOI: | 10.1137/040603139 |