De Novo Assembly and Annotation of the Siganus fuscescens (Houttuyn, 1782) Genome: Marking a Pioneering Advance for the Siganidae Family

This study presents the first draft genome of Siganus fuscescens , and thereby establishes the first whole-genome sequence for a species in the Siganidae family. Leveraging both long and short read sequencing technologies, i.e., Oxford Nanopore and Illumina sequencing, we successfully assembled a mi...

Full description

Saved in:
Bibliographic Details
Published inMarine biotechnology (New York, N.Y.) Vol. 26; no. 5; pp. 902 - 916
Main Authors Mwamburi, Samuel Mwakisha, Kawato, Satoshi, Furukawa, Miho, Konishi, Kayo, Nozaki, Reiko, Hirono, Ikuo, Kondo, Hidehiro
Format Journal Article
LanguageEnglish
Published New York Springer US 01.10.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents the first draft genome of Siganus fuscescens , and thereby establishes the first whole-genome sequence for a species in the Siganidae family. Leveraging both long and short read sequencing technologies, i.e., Oxford Nanopore and Illumina sequencing, we successfully assembled a mitogenome spanning 16.494 Kb and a first haploid genome encompassing 498 Mb. The assembled genome accounted for a 99.6% of the estimated genome size and was organized into 164 contigs with an N50 of 7.2 Mb. This genome assembly showed a GC content of 42.9% and a high Benchmarking Universal Single-Copy Orthologue (BUSCO) completeness score of 99.5% using actinopterygii_odb10 lineage, thereby meeting stringent quality standards. In addition to its structural aspects, our study also examined the functional genomics of this species, including the intricate capacity to biosynthesize long-chain polyunsaturated fatty acids (LC-PUFAs) and secrete venom. Notably, our analyses revealed various repeats elements, which collectively constituted 17.43% of the genome. Moreover, annotation of 28,351 genes uncovered both shared genetic signatures and those that are unique to S. fuscescens . Our assembled genome also displayed a moderate prevalence of gene duplication compared to other fish species, which suggests that this species has a distinctive evolutionary trajectory and potentially unique functional constraints. Taken altogether, this genomic resource establishes a robust foundation for future research on the biology, evolution, and the aquaculture potential of S. fuscescens .
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1436-2228
1436-2236
1436-2236
DOI:10.1007/s10126-024-10325-9