Applications of Carbon Fiber Instrumentation in Spinal Oncology: Recent Innovations in Spinal Instrumentation and 2-Dimensional Illustrative Operative Video
The management of spinal oncology necessitates a multimodal approach, with surgical intervention, radiation-based therapy, and postoperative advanced imaging. These systems must work well together to provide optimal patient outcomes. Traditional metallic spinal implants produce image artifacts and l...
Saved in:
Published in | Operative neurosurgery (Hagerstown, Md.) Vol. 24; no. 2; p. 182 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
01.02.2023
|
Subjects | |
Online Access | Get more information |
Cover
Loading…
Summary: | The management of spinal oncology necessitates a multimodal approach, with surgical intervention, radiation-based therapy, and postoperative advanced imaging. These systems must work well together to provide optimal patient outcomes. Traditional metallic spinal implants produce image artifacts and lead to radiation dose attenuation, which inhibit both disease monitoring and disease treatment, respectively.
To demonstrate the feasibility of an improved biomaterial implant that provides structural stability, while also allowing for disease monitoring and treatment in spinal oncology patients.
From February 2021 to September 2021, 3 patients with spinal oncologic deformity requiring resection and posterior spinal stabilization underwent fixation with polyether ether ketone-carbon fiber implants at a single academic institution.
Patient ages ranged from 23 to 74 years (mean: 44.7 years). All patients underwent posterior spinal fixation using standard approaches. They each received polyether ether ketone-carbon fiber pedicle screw and rod implants, placed in standard fashion. There were no dural tears, postoperative wound infections, or other complications related to their treatment. Postoperative surveillance revealed gross total resection of the targeted tumor on postoperative radiographic imaging.
Polyether ether ketone-carbon fiber implants are a safe and effective option for the treatment of thoracolumbar posterior spinal pathology. The utilization of this novel type of instrumentation in posterior spinal approaches may provide benefit to patients with spinal tumors over existing forms of posterior spinal instrumentation. |
---|---|
ISSN: | 2332-4260 |
DOI: | 10.1227/ons.0000000000000471 |