Peronia peronii as a bio-indicator to assess the toxicity of waterpipe tobacco leachates in aquatic and sediment media

This study was aimed to survey toxicity of waterpipe wastes leachates on Peronia peronii in aquatic and sediment environments as two exposure media. For this, leachates of four tobacco types including burnt traditional tobacco (BTT), fresh traditional tobacco (FTT), burnt fruit-flavored tobacco (BFT...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental geochemistry and health Vol. 46; no. 9; p. 323
Main Authors Soleimani, Farshid, Alipour, Vali, Dadipoor, Sara, Lidón-Moyano, Cristina, Vazirizadeh, Amir, Rashidi, Roshana, Arfaeinia, Hossein, Gaffari, Hamidreza, Dobaradaran, Sina
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.09.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study was aimed to survey toxicity of waterpipe wastes leachates on Peronia peronii in aquatic and sediment environments as two exposure media. For this, leachates of four tobacco types including burnt traditional tobacco (BTT), fresh traditional tobacco (FTT), burnt fruit-flavored tobacco (BFT) and fresh fruit-flavored tobacco (FFT)) were prepared and used to assess their toxic effects on P. peronei in two aquatic and sediment media. The in-vivo toxic effects of five different concentrations of waterpipe tobacco waste leachates on P. peronii were evaluated. The LC 50 values of BTTs leachates to P. peronii were 17.50, 16.05, 11.31 and 9.38 g/L at exposure times of 24, 48, 72 and 96 h, respectively in aquatic media. These values for BFTs leachates were 14.86, 12.38, 9.53 and 7.46 g/L at exposure times of 24, 48, 72 and 96 h, respectively. In the case of sediment media, the LC 50 values of BTTs leachates were 15.33, 13.70, 9.09 and 6.70 g/L at exposure times of 24, 48, 72 and 96 h, respectively while these values for BFTs leachates were 12.00, 10.32, 8.20 and 5.65 g/L. Fruit-flavored tobacco leachates had significantly higher toxicity than traditional tobacco leachates for P. peronii . The findings also showed significant differences between the LC 50 values of different leachates in different media of water and sediment. The results demonstrated that even small amount of tobacco waste (~ 5 to 6 g/L) can lead to P. peronii mortality and may also pose a hazard to other aquatic and benthic organisms. The results obtained from the present study can be used as a baseline data to assess local effects causing from unsafe disposal of post-consumption tobacco waste in beach areas. In addition, these findings can lead to encouraging decision-makers to focus more on the types of tobacco waste in the municipal solid waste management system and to implement a source separation process for these wastes.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0269-4042
1573-2983
1573-2983
DOI:10.1007/s10653-024-02105-0