Insights into the enhanced adsorption of glyphosate by dissolved organic matter in farmland Mollisol: effects and mechanisms of action

Dissolved organic matter (DOM) is easy to combine with residual pesticides and affect their morphology and environmental behavior. Given that the binding mechanism between DOM and the typical herbicide glyphosate in soil is not yet clear, this study used adsorption experiments, multispectral techniq...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental geochemistry and health Vol. 46; no. 11; p. 459
Main Authors Jiao, Yaqi, Jia, Junxin, Gu, Jiaying, Wang, Sa, Zhou, Qin, Li, Hui, Li, Li
Format Journal Article
LanguageEnglish
Published Dordrecht Springer Netherlands 01.11.2024
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Dissolved organic matter (DOM) is easy to combine with residual pesticides and affect their morphology and environmental behavior. Given that the binding mechanism between DOM and the typical herbicide glyphosate in soil is not yet clear, this study used adsorption experiments, multispectral techniques, density functional theory, and pot experiments to reveal the interaction mechanism between DOM and glyphosate on Mollisol in farmland and their impact on the environment. The results show that the adsorption of glyphosate by Mollisol is a multilayer heterogeneous chemical adsorption process. After adding DOM, due to the early formation of DOM and glyphosate complex, the adsorption process gradually became dominated by single-layer chemical adsorption, and the adsorption capacity increased by 1.06 times. Glyphosate can quench the endogenous fluorescence of humic substances through a static quenching process dominated by hydrogen bonds and van der Waals forces, and instead enhance the fluorescence intensity of protein substances by affecting the molecular environment of protein molecules. The binding of glyphosate to protein is earlier, of which affinity stronger than that of humic acid. In this process, two main functional groups (C–O in aromatic groups and C–O in alcohols, ethers and esters) exist at the binding sites of glyphosate and DOM. Moreover, the complexation of DOM and glyphosate can effectively alleviate the negative impact of glyphosate on the soil. This study has certain theoretical guidance significance for understanding the environmental behavior of glyphosate and improving the sustainable utilization of Mollisol. Graphical abstract
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0269-4042
1573-2983
1573-2983
DOI:10.1007/s10653-024-02210-0