Visualization of mitochondria in cardiomyocytes by simultaneous harmonic generation and fluorescence microscopy

The simultaneous detection of third harmonic (THG), and multiphoton excitation fluorescence (MPF) or second harmonic (SHG) from the same focal volume has led us to the development of a nonlinear multimodal microscopic biological imaging tool. The multimodal microscope has been applied for imaging of...

Full description

Saved in:
Bibliographic Details
Published inOptics express Vol. 13; no. 20; pp. 8263 - 8276
Main Authors Barzda, Virginijus, Greenhalgh, Catherine, Aus der Au, Jürg, Elmore, Steven, van Beek, Johannes, Squier, Jeff
Format Journal Article
LanguageEnglish
Published United States 03.10.2005
Online AccessGet full text

Cover

Loading…
More Information
Summary:The simultaneous detection of third harmonic (THG), and multiphoton excitation fluorescence (MPF) or second harmonic (SHG) from the same focal volume has led us to the development of a nonlinear multimodal microscopic biological imaging tool. The multimodal microscope has been applied for imaging of isolated live cardiomyocytes, and investigation of structural origin of the THG and SHG signals has been performed. By employing the different image contrast mechanisms, differentiation of structures inside a single live adult rat cardiomyocyte has been achieved. Based on structural crosscorrelation image analysis between NAD(P)H fluorescence and THG, and morphology of cardiomyocytes we were able to assign large part of the structure revealed by THG to the mitochondria. The crosscorrelation of THG with fluorescence of tetramethylrhodamine methyl ester (TMRM) labeled cardiomyocytes confirmed the mitochondrial origin of THG. The SHG generated structures were anticorrelated with THG and possessed the characteristic pattern of the myofibrils in the myocyte in accordance with the literature. Possible visualization of mitochondria with THG microscopy appeared due to enhancement of the third harmonic by multilayer arrangement of cristae.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1094-4087
DOI:10.1364/OPEX.13.008263