Electrical Stimulation of Vocal Fold Adduction Triggered by Laryngeal Electromyography Using a Custom Implant

Medialization procedures for unilateral vocal fold (VF) paralysis generally improve voice but do not fully replace dynamic VF adduction. Paralyzed VFs typically experience synkinetic reinnervation, which makes it feasible to elicit movement through electrical stimulation. We tested a novel laryngeal...

Full description

Saved in:
Bibliographic Details
Published inJournal of speech, language, and hearing research Vol. 66; no. 12; pp. 4812 - 4827
Main Authors Heaton, James T, Kobler, James B, Otten, David M, Tynan, Monica A, Petrillo, Robert H, Ottensmeyer, Mark P, Slate, Andrea R, Hillman, Robert E, Zeitels, Steven M
Format Journal Article
LanguageEnglish
Published United States 11.12.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Medialization procedures for unilateral vocal fold (VF) paralysis generally improve voice but do not fully replace dynamic VF adduction. Paralyzed VFs typically experience synkinetic reinnervation, which makes it feasible to elicit movement through electrical stimulation. We tested a novel laryngeal pacing implant capable of providing closed-loop (automatic) stimulation of a VF triggered by electromyography (EMG) potentials from the contralateral VF. A custom, battery-powered, microprocessor-based stimulator was tested in eight dogs with bipolar electrodes implanted for recording EMG from the left VF and stimulating adduction of the right VF. A cuff electrode on the left recurrent laryngeal nerve (RLN) stimulated unilateral VF adduction, modeling voluntary control in anesthetized animals. Closed-loop stimulation was tested in both acute and chronic experiments. Synkinetic reinnervation was created in two animals by right RLN transection and suture repair to model unilateral VF paralysis. In all animals, left VF activation through RLN stimulation generated a robust EMG response that rapidly triggered stimulation of contralateral thyroarytenoid and lateral cricoarytenoid muscles, causing nearly simultaneous bilateral adduction. Optimal triggering of VF stimulation from elicited EMG was achieved using independent onset and offset thresholds. Real-time artifact blanking allowed closed-loop stimulation without self-perpetuating feedback, despite the proximity of recording and stimulation electrodes. Using a custom implant system, we demonstrated real-time closed-loop stimulation of one VF triggered by the activation of the contralateral VF. This approach could potentially restore dynamic glottic closure for reflexive behaviors or phonation in cases of unilateral VF paralysis with synkinetic reinnervation. https://doi.org/10.23641/asha.24492133.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1092-4388
1558-9102
DOI:10.1044/2023_JSLHR-23-00377