Optimal signal design for coherent detection of binary signals in Gaussian noise under power and secrecy constraints

The problem of optimal signal design for coherent detection of binary signals in Gaussian noise is revisited under power and secrecy constraints. In particular, the aim is to select the binary transmitted signals in an optimal manner so that the probability of error is minimized at an intended recei...

Full description

Saved in:
Bibliographic Details
Published inSignal processing Vol. 210; p. 109052
Main Authors Dulek, Berkan, Gezici, Sinan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2023
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The problem of optimal signal design for coherent detection of binary signals in Gaussian noise is revisited under power and secrecy constraints. In particular, the aim is to select the binary transmitted signals in an optimal manner so that the probability of error is minimized at an intended receiver while the probability of error at an eavesdropper is maintained above a threshold value and the signal powers are limited. It is shown that an optimal solution exists in the form of antipodal signaling along the eigenvector corresponding to the solution of a maximum (possibly generalized) eigenvalue problem, which is specified explicitly based on the channel coefficient matrices and the noise covariance matrices at the intended receiver and the eavesdropper. Furthermore, optimal signal design can be performed in an efficient manner by solving a semidefinite programming (SDP) relaxation followed by a matrix rank-one decomposition. Numerical examples are provided to illustrate optimal solutions for three different but exhaustive cases.
ISSN:0165-1684
1872-7557
DOI:10.1016/j.sigpro.2023.109052